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Abstract 

Background: Stratum corneum (SC) cells are imprinted with congenital and acquired 

physiological information; however, there is no method available to fully access and 

interpret this information. Therefore, the aim of this study was to develop a method for 

comprehensively decoding the physiological information of the skin included in SC cells. 

Toward this end, we established a novel image analysis technique based on artificial 

intelligence (AI) and multivariate analysis to estimate the skin condition. 

Methods: SC samples were collected, imaged, and annotated to SC cells. Nine 

biomarkers in SC samples were measured using enzyme-linked immunosorbent assay. 

The data were then used to establish two machine learning models to automatically 

recognize individual SC cell regions in images and estimate the levels of the nine 

biomarkers. Skin physiological indicators (e.g., skin barrier function, facial analysis, 

questionnaire) were measured or obtained from self-report of the subjects. Multivariate 

analysis including biomarker levels and structural parameters of SC cells as variables was 

used to estimate these physiological indicators. 
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Results: We established two machine learning model. The accuracy of recognition was 

assessed according to the union average intersection (0.613), recall (0.953), accuracy 

(0.640), and F value (0.766). Biomarker levels predicted by the model significantly 

correlated with measured levels. Skin physiological indicators and the questionnaire 

answers were estimated with high correlation and correct answer rates. 

Conclusion: Various skin physiological conditions can be estimated from SC cells using 

AI models and multivariate analysis. Our method is expected to be useful in optimization 

of treatment with a personalized approach. 
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Introduction 

The American architect Luis Sullivan is attributed to coining the phrase “form follows 

function,” which if correct, further implies that “function is inferred from form.” Based 

on this concept, the morphology of stratum corneum (SC) cells would follow skin 

physiological function. Indeed, the structure of SC cells is closely related to skin function 

such as skin barrier function, skin permeability, and nerve elongation [1-4]. SC cells are 

formed in the process of keratinization from the basement membrane to the surface layer. 

In the stratum granulosum, keratinocytes taken on a flattened morphology, forming a flat 

Kelvin tetradecahedron with tight junctions (TJs) to fill the spaces, exhibiting regular 

overlap and arrangement; the TJs and nucleus eventually disappear, leading to the final 

keratinization structure [5-7]. Therefore, a large amount of physiological information is 

engraved on the SC. Various methods have been proposed for evaluating skin 

physiological conditions based on the morphological characteristics of keratinocytes and 

the specific protein content in the SC. The area of SC cells was suggested as an index of 

the differentiation rate, and the exfoliation state of the SC was proposed as an index of 

the water content in the SC [8]. Moreover, we previously reported that specific protein 

expression levels in SC cells are associated with atopic dermatitis and skin barrier 

properties [9-14], and can be used as a biomarker for evaluating the skin condition. 

However, morphological evaluation of SC cells requires visual judgment and recognition, 

and biomarker measurement in SC cells requires a biochemical assay such as 



immunoblotting or enzyme-linked immunosorbent assay (ELISA). These approaches 

require time, additional costs, and specific sophisticated equipment, which are barriers to 

the practical application and research of an appropriate evaluation method, necessitating 

the development of simple methods. Furthermore, there have been limited comprehensive 

studies on the morphological characteristics of SC cells, with much room for 

improvement in the evaluation method of the skin physiological state based on the 

morphological characteristics of SC cells. Machine learning technology has dramatically 

developed in recent years, enabling accurate recognition and classification of specific 

objects in images [15, 16], which has been applied in various fields such as in the analysis 

of microscopic and medical images [17, 18].  

In this study, we constructed two machine learning models that automatically recognize 

individual SC cells and estimate the levels of relevant biomarkers in SC cells from images 

of SC cells. In addition, we developed a system for estimating skin physiological 

indicators and skin responsiveness by multiple regression analysis using the numerical 

output values from these two machine learning methods. 

 

Materials and Methods 

Subjects 

We obtained data from two groups of subjects. SC cells from 996 healthy Japanese 

women (20–92 years old, average 43.2 years old) were collected and used as training data 

and test data to construct the machine learning model. In addition, to construct a 

mathematical model for estimating the physiological parameters of the skin, we collected 

SC cells, measured skin physiological parameters (see Sections below), and obtained 

responses from skin-related questionnaires from a separate group of 516 Japanese women 

(20–92 years old, average 44.3 years old). Written informed consent was obtained from 

all the subjects. The studies were conducted with t approval of the ethical committee of 

FANCL Co. Ltd. and as per the principles of the Declaration of Helsinki. 

 

Collection and imaging of SC cells 

SC samples of the cheek were obtained by single stripping using a skin tape (25 × 25 

mm; Horney Layer Checker; Asahi Biomed Co. Ltd, Tokyo, Japan). The collected SC 

cells were imaged using Dino-lite AM7515 (AnMo Electronics Corp., Taiwan) with 8-bit 

RGB, 0.41µm/pixel, and the 2592 × 1944 pixels. Images were taken in 2–5 fields per 



sample. 

 

Data preparation for machine learning 

We constructed two machine learning models: an automatic recognition model of 

individual SC cell regions and an estimation model of biomarker levels in the SC cells. 

Individual SC cell regions in images obtained from 996 subjects were visually identified 

and labeled using the annotation software Labelme (MIT, Cambridge, MA, USA) (Figure 

1). In addition, the annotated images were expanded by rotation and inversion, which 

were used as the training and test images. For machine learning, an instance segmentation 

model pre-learned with ImageNet was used, and a machine learning model that 

automatically recognized individual SC cell regions was constructed. To construct a 

biomarker estimation model in the SC cells, 157 samples were used for the actual 

measurement and learning of the biomarker values. The model was trained based on the 

levels of nine biomarkers [heat shock protein 27 (HSP27), macrophage migration 

inhibitory factor (MIF), interleukin 1 receptor antagonist (IL-1Ra), DJ-1, galectin-7 

(GAL-7), arginase-1 (ARG1), neutrophil gelatinase-associated lipocalin (NGAL), 

epidermal fatty acid binding protein (FABP5), and enolase-1 (Eno-1)] that were 

quantified using ELISA (see Section below) and the SC cell images. A convolutional 

neural network (CNN) was used for learning and a machine learning model for estimating 

biomarker values from the SC images was constructed. 

 

 

 

ELISA 

Samples were extracted using T-PER Tissue Protein Extraction Reagent (Thermo 

Fisher Scientific Inc., Waltham, MA, USA) or RIPA Lysis and Extraction Buffer 

Figure 1 Annotation of SC cells from images 

Raw image (left) and annotated data (right). The red frame indicates an SC region 

recognized by human sight. 

 

 



(Thermo Fisher Scientific). The concentrations of the nine biomarkers in the extracts 

were quantified using ELISA. To correct for the variable numbers of SC cells collected, 

total protein concentrations in the extracts were determined using the Pierce BCA 

Protein Assay Kit (Thermo Fisher Scientific) and the amount of biomarker per total 

protein was calculated. Machine learning was performed using this corrected value. 

 

Quantification of SC cell shape 

For SC cells in each image, individual cell regions were labeled using the automatic cell 

recognition model constructed in this study. The morphological parameters (area, 

circumference, roundness, regular polygon approximation, etc.) and intensity values 

(intracellular brightness mean, standard deviation, etc.) of each labeled cell were 

quantified. In addition, the variability in the shape and brightness values between the cells 

in the image was calculated. All cell regions and stratified regions were labeled using 

Otsu’s method [19] for document image binarization, and these areas were quantified 

(Figure 2). 

 

 

 

Instruments and measurements 

The skin parameters were assessed using noninvasive bioengineering measurements. 

The Tewameter VapoMeter (Keystone Scientific, Tokyo, Japan), SKICON 200EX skin 

conductance meter (Yayoi Co., Ltd., Tokyo, Japan) and MPA580 Cutometer® (Courage + 

Khazaka Electronic GmbH, Cologne, Germany) were used to determine trans-epidermal 

water loss (TEWL), skin hydration, and skin elasticity, respectively. Clinical images were 

taken using a VISIA evolution system (Canfield Scientific, Fairfield, New York, USA). 

The room used for measurements was kept at a constant temperature (21–24 °C) and 

within a certain humidity range (40–60%). 

Figure 2 Identification of the cell region and multi-layered region by binarization. 

Raw image (left). All SC cell regions (center) and stratified regions (right) were 

labeled using Otsu’s method. The blue line indicates the boundary between the cell 

area and the background, and the green area indicates the stratified regions. 



 

Questionnaires 

The following questions related to the participants’ skin response to cosmetics and 

ultraviolet (UV) radiation were asked: I. Cosmetics do not agree with your skin (yes/no); 

Ⅱ. Experience inflammation and itching caused by cosmetics (very often/often/no); Ⅲ. 

Reddening after sunburn (yes/no); Ⅳ. Turning brown after sunburn (yes/no). 

 

Statistical analysis  

Correlation analysis was performed using the Pearson product-moment correlation test 

to evaluate biomarker levels predicted by the machine learning model. To estimate skin 

parameters, multiple regression analysis was performed using structural and biomarker 

values as explanatory variables. Discriminant analysis was used to predict qualitative 

variables of the questionnaire answers. All statistical analyses were performed using 

JMP® 16.2.0 (SAS Institute Inc., Cary, NC, USA). Results were considered significant 

when P < 0.05. 

 

Results 

Machine learning model for automatic recognition of individual SC cell regions 

First, we established two machine learning models that recognize SC cells regions and 

predict biomarker protein levels from SC images, respectively. A system that 

automatically recognizes SC cell regions was constructed by machine learning on a large 

number of SC cell images and their annotated images. To evaluate the accuracy of the 

automatic recognition model of the SC cell region, the machine-learning model was 

applied to the test data (not used to learn) for estimation of the SC cell region. The 

predicted images were merged with annotated data (Figure 3) and evaluated qualitatively 

and quantitatively. The number of cells recognized by the model was lower than that 

annotated by human visual judgment. In addition, the estimated cell region coincided 

approximately with the annotated region. Quantitative analysis showed that the 

intersection over union (IoU), recall, precision, and F-measure (F-number) was 0.613, 

0.953, 0.640, and 0.766, respectively. Thus, recall was very high, whereas the IoU seemed 

to be reduced compared to visual evaluation. 



 

 

Machine learning model for estimating the biomarker levels of SC cells 

We also constructed a model to estimate the levels of the nine biomarkers in the SC 

cells. To evaluate the accuracy of the biomarker estimation model, a machine learning 

model was applied to the test data to estimate the biomarker value. Correlation analysis 

was performed to evaluate the relationship between the values measured by ELISA and 

the predicted value, which showed that the predicted values of the nine biomarkers 

significantly correlated with the measured values, although the correlations were weak, 

with a correlation coefficient ranging from 0.213 to 0.450 (Figure 4). However, the 

predicted values of all markers were lower than the measured values and the distribution 

ranges were narrower. 

 

Estimating skin physiological indicators from SC images 

Next, we investigated whether it is feasible to estimate the skin physiological indicators 

by instrument measurement using the images of SC cells. The above two machine 

learning models were applied to SC cell images. The morphological parameters and 

brightness values of each labeled SC cell were also quantified. Multiple regression 

analysis was performed to predict the skin physiological indicators using the SC cell 

morphological parameters and biomarker levels predicted by the machine learning model 

as explanatory variables. The measured values of the SC water content and TEWL were 

significantly correlated with the estimated values from the multiple regression analysis 

(Figure 5). In particular, IL-1Ra, GAL-7, and ARG-1 levels and elliptic approximation 

contributed significantly to the estimation of SC water content, while HSP27, GAL-7, 

and DJ-1 levels, and cell circumference contributed significantly to the estimation of 

TEWL. The values of the elasticity indicators R0, R2, R5, R6, and R7 all showed a 

significantly strong correlation with the estimated values (Figure 6). HSP27 and DJ-1  

Figure 3 Evaluation of predicted and annotated regions 

Raw image (left). Regions predicted by the machine-learning model (center); the pink 

area indicates the predicted region. Merged image (right); green: annotated area (false 

negative), blue: predicted area (false positive), cyan: true positive. 



 

 

 

levels, the intracellular intensity value (average), and the long-short side ratio of a 

rectangle circumscribing a cell (average) were found to have high common contributions 

to these parameters. Indicators related to skin elasticity and wrinkles (texture count and 

wrinkle count), UV damage (UV spots), stains (brown spot count), pores (pore count and 

spot count), and to inflammation (red spot count and red vascular count) were output from 

the whole-facial imaging device VISIA, and a significant and strong correlation was 

obtained for each index (Figure 7). GAL-7 and ARG-1 levels, the long-short side ratio of 

a rectangle circumscribing a cell (average), and mean intracellular intensity values were 

highly correlated with indicators related to elasticity and wrinkles. The MIF and DJ-1 

Figure 4 Correlation plots of predicted values determined by the machine-

learning model and the values measured by ELISA for nine biomarkers in 

SC cells. 



levels and number of angles of a regular polygon to approximate (standard deviation) 

were highly correlated with the UV damage index. HSP27 and MIF levels, number of 

angles of a regular polygon to approximate (average), and intracellular intensity value 

(average) were highly correlated with the brown spots. NGAL, ARG-1, and cell 

circumference (average) were closely associated with the pore index. HSP27, MIF, and 

area of the rectangle circumscribing the cell (average) were highly correlated with the 

index related to spots. IL-1Ra, DJ-1, and number of angles of a regular polygon to 

approximate (average) were highly correlated with indicators of inflammation. Table 1 

shows the top 10 parameters with high contributions to predicting each indicator with the 

associated t value. 

 

Estimating skin responsiveness from SC images 

We verified the feasibility and accuracy of estimating the responsiveness of cosmetics 

and UV rays to the skin, as reported in the questionnaires, with the images of the SC cells. 

The questionnaire answers were predicted by discriminant analysis using the SC cell 

morphological parameters and biomarker levels estimated by the machine learning model 

as explanatory variables. Figure 8 shows the distribution ratios of the estimated and actual 

answers. It was possible to estimate whether cosmetics did not agree with the skin, with 

a correct answer rate of 84.3%. Regarding the experience of inflammation or itch caused 

by cosmetics, the overall correct rate was 57.9%, which was relatively low; however, for 

the answer “very often,” the correct rate was 78.3%, and when classified by experience 

or not, the correct rate was 72.4%. For the answers indicating that the skin turned red or 

black due to UV exposure, the correct rates were 70.9% and 68.5%, respectively. 

 

 

 

Figure 5 Correlation plots of predicted and measured values of SC water contents and 

TEWL 



 

 

 

 

 

 

 

 

 

Figure 6 Correlation plots of predicted and measured values of elasticity indicators 



 

Figure 7 Correlation plots of predicted and measured values from VISIA 
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Figure 8 Distribution ratio of the estimated answer and the actual answer 



Discussion 

In this study, we first developed two machine learning models: one that automatically 

recognizes individual SC cell regions in an image and another that predicts the levels of 

biomarkers in the SC from the image. The SC cell regions were recognized using this 

model with very high recall accuracy, although IoU and precision were low. However, 

since IoU was calculated including the area of the cells that the model did not recognize, 

the SC cells recognized by this model were actually recognized at a higher IoU. To 

evaluate the individual morphological characteristics of SC cells, it is necessary to 

accurately determine the morphology of typical cells, even in small numbers. Therefore, 

the recall and IoU values have a higher priority than precision. The model constructed in 

this study can automatically recognize the approximate SC cell morphological features. 

Visual judgment and annotation usually take approximately 1 h for one SC cell image, 

whereas our model can complete this task within a few seconds. This method would 

therefore be useful for real-time skin evaluation and abundant sample evaluations. We 

also attempted machine learning to determine the presence of nuclei in the SC cells; 

however, the recognition accuracy was only 45% (data not shown), and further learning 

was required. 

The model for estimating biomarker levels roughly predicted the measured levels 

quantified by ELISA. A weak but significant correlation was confirmed between the 

model-predicted levels and measured levels of the biomarkers. However, the estimated 

levels were smaller than the measured values, and their distribution was narrow. This may 

indicate that the training data were biased in terms of the median values; thus, it would 

be necessary to train the data with a wide distribution uniformly. Measuring biomarkers 

in SC cells requires extensive time, money, and equipment. Moreover, there are also limits 

to the types of biomarkers that can be measured from a single sample. Our machine-

learning model can easily and quickly determine the approximate number of multiple 

markers without these limitations. There is room for further improvement in estimation 

accuracy when adding training data, optimizing the imaging device and settings, and 

optimizing the module in machine learning. Moreover, multiple regression analysis with 

the predicted values and SC cell morphological parameters has potential to improve the 

estimation accuracy. 



Next, using the morphological parameters and biomarker levels of the SC cells from the 

two constructed machine-learning models, verification of the skin physiological state was 

performed by multiple regression analysis and discriminant analysis. Our data showed 

that the SC water content, TEWL, elasticity value, and index from VISIA could be 

estimated from image analysis of SC cells, with high correlations obtained. Furthermore, 

the results of questionnaires regarding cosmetics and UV responsiveness could be 

estimated with correct rates of 70–85% by analysis of SC cells.  

The relationship between SC cell characteristics and the physiological state of the skin 

has been studied for a long time, and some methods have been developed that are used in 

clinical settings. Our two machine-learning models for images of SC cells offers a 

convenient approach to obtain SC cell morphological parameters and nine biomarker 

levels. Thus, we could comprehensively and quickly quantify the characteristics of the 

SC cells, which can help progress research into understanding the relationship between 

the characteristics of SC cells and the skin physiological condition. In this study, we 

clarified the relationship with several physiological indicators; however, there is potential 

to estimate many other physiological indicators, future skin conditions, and to predict the 

effects of cosmetics by analyzing SC cells. Furthermore, multiple regression analysis can 

be used to identify biomarkers or morphological parameters that are highly correlated 

with each skin physiological state among many parameters. These parameters are useful 

for elucidating the mechanisms underlying skin physiology. For example, relationships 

between HSP27 and GAL-7 in the SC cells and barrier indicators, SC water content, and 

TEWL have been reported [12, 14]. Our data also suggest that these relationships are 

particularly stronger than those of other parameters. Conversely, we found that the non-

uniformity of the intensity of the SC cells, which has not been paid attention to in the past, 

is highly related to the pore index. We identified a large number of such relationships, 

which may provide key information for the discovery of new dermatological mechanisms. 

Thus, our image analysis technique can help to decode the enormous amount of 

information engraved in SC cells beyond what is possible to observe with the naked eye. 

 

Conclusion 

We constructed two machine-learning models that can automatically recognize SC cells 



and estimate the biomarkers levels in SC cells. The barrier function, color, inflammation, 

elasticity, and responsiveness of the skin can be estimated by the morphological 

characteristics and biomarker levels of the SC cells output by these models. Various skin 

physiological conditions can be identified from the analysis of SC cells by machine 

learning with image and multivariate analyses.  
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