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Abstract  

The development of epidermis and its homeostasis require tightly regulated molecular 

processes governed by cooperation and interaction of molecules, such as transcripts, proteins, 

and metabolites. The complexity of these regulations makes clear that studying the system at a 

single molecular level gives only limited information, hence integrating and inferring 

regulatory interactions from these data are crucial.   

Methods: To investigate the potential of multi-omics integration to identify the sequential 

events leading to epidermis differentiation, we generated concurrent high-throughput RNA-seq, 

and quantitative proteomics and metabolomics from a commercial reconstructed human 

epidermis model (SkinEthic Episkin Co, Lyon, France). In this regard, datasets were first 

collected at eleven timepoints over twenty-eight days of culture, integrated and clustered. Then, 

a multi-layer network-based analysis using both data-driven and knowledge-driven building 

methods was used to map the regulatory interactions between clustered molecules.  

Results: Cluster analysis identified eight distinct subgroups of molecules which showed 

distinctive temporal patterns characterized by their initial levels of abundance and variation 

over the time-course. Functional enrichment analyses allowed to capture precise biological 

events occurring during keratinocyte differentiation process. In addition, multi-layered network 

approach enabled to identify sub-networks of pathways associated with keratinocyte 

differentiation and expanded the sub-networks to additional markers that have evidence of 

interactive or regulatory mechanisms relevant for sub-networks characterization. 

Conclusions: By integrating longitudinal multi-omics datasets, we were able to detect temporal 

relationships and interactions between biomolecules which will provide us with a 
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comprehensive list of known and previously unrecognized components of the epidermal 

reconstruction process. 
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Introduction  

The development of epidermis and its homeostasis require tightly regulated molecular 

processes that involves epidermal keratinocyte proliferation, differentiation, and apoptosis to 

name a few of them. Such processes are governed by a dynamic cooperation and interaction of 

biomolecules, namely transcripts, proteins, and metabolites, and each of these biomolecules 

embed essential information about the regulatory programs orchestrating skin’s features.  

To study epidermis development, researchers are increasingly using 3D cell cultures. Three-

dimensional skin models offer the potential to study various skin disorders and evaluate the 

efficacy and safety of active compounds in vitro. Previous work investigating the longitudinal 

patterns of calcium-induced differentiation of primary human keratinocytes in 2D monolayer 

cells or 3D reconstituted human epidermis (RHE) models have mainly focused on studying this 

process at a single-omics layer, e.g., transcriptomics or proteomics [1-4]. These studies allowed 

to detect biomolecules of one type, and thus captured changes only for a subset of the 

components of a particular pathway. More recently, multi-omics datasets were generated and 

used to study molecular mechanisms, for instance the unfolded protein response signaling 

pathway by which human keratinocytes undergo to terminal differentiation [5]. While different 

omics layers existed, the datasets were analyzed separately, and the conclusions were compared 

and combined. Thus, the capture of the complementary effects and synergistic interactions 

between the different omics layers and biomolecules has lacked. To address this issue, we have 

recently developed an analytical framework for the integration of longitudinal multi-omics 

datasets that relies on multi-omics kinetic clustering approach [6] and multi-layers network-

based analysis using both data-driven and knowledge-driven methods [7]. In this study, we 

tailored these approaches to comprehensively profile in a holistic view the landscape of multi-

layer biomolecules and expression dynamics across a densely sampled time course of epidermal 

reconstruction. We were able to facilitate the interpretation of multi-layers systems and to detect 

within temporal relationships and interactions between molecules. To our knowledge, this is 

the first longitudinal multi-omics integrative study to provide a comprehensive view of known 

and previously unrecognized components of the epidermal reconstitution process.  
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Materials & Methods 

 

SkinEthicTM Reconstructed Human Epidermis culture  

The reconstructed human epidermis (RHE) equivalent cultures were prepared at EPISKIN 

Laboratories (Lyon, France) following their standard protocol. Human neonatal keratinocytes 

from four individual donors were previously cultivated on plastic in monolayer culture with a 

chemically defined medium to prepare banks. Keratinocytes were then seeded onto 

polycarbonate filter inserts. Two hours after seeding, cultures were raised to the air-liquid 

interface in a chemically defined medium. The air-liquid culture continued for a total of 28 days 

(time 1, 3, 5, 7, 10, 12, 14, 17, 21, 25 and 28 days) to produce the fully differentiated epidermal 

equivalents.  

 

Hematoxylin and eosin (HE) analysis  

For all conditions, tissues were fixed in a formalin solution (4%W/V) before to be dehydrated 

and embedded in paraffin. Paraffin blocks were cut in 5µm thickness sections using the 

microtome for histology. After mounting the cuts on a blade, the sections were stained with 

hemalun-eosin (HE) on a Sakura robot and were scanned using the Nanozoomer (NDP scan 

software 3.3) for imaging. 

 

Total RNA extraction 

Tissue samples were homogenized in QIAzol Lysis Reagent (Qiagen, Germantown, MD, USA) 

using a rotor-stator homogenizer. Total RNA was extracted using the miRNeasy micro kit on-

column DNase (Qiagen, Hilden, DE) treatment following the manufacturer’s instructions. 

Quantity of RNA was measured using a NanoDrop ND-1000 Spectrophotometer (NanoDrop 

Technologies, Wilmington, DE, USA) and total RNA quality was assayed on an Agilent 

BioAnalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA). 

 

Total RNA-Sequencing 

The Illumina TruSeq stranded Total RNA library prep kit with Ribo-Zero Gold (Illumina Inc., 

San Diego, CA, USA) was used to prepare RNA sequencing libraries, according to 

manufacturer’s instruction. Briefly, 1 ug of total RNA was used. Ribosomal RNA (rRNA) 

including both cytoplasmic and mitochondrial rRNA was removed using biotinylated, target-

specific oligos combined with Ribo-Zero rRNA removal beads. Following purification with 

Agencourt AMPure XP beads (Beckman Coutler, Missisauga, Ontario, Canada), the RNA was 
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fragmented using divalent cations under elevated temperature. The fragmented RNA was used 

as a template for cDNA synthesis by reverse transcriptase with random primers. Strand 

specificity was achieved by replacing dTTP with dUTP. This cDNA was further converted into 

double stranded DNA that was end-repaired to incorporate the specific index adaptor for 

multiplexing. Followed a purification, an amplification for 15 cycles was performed using a 

polymerase unable to incorporate past dUTP. Therefore, the second strand is quenched during 

amplification. The quality of final amplified librairies were examined with a DNA screentape 

D1000 on a TapeStation 2200 and the quantification was done on the QBit 3.0 fluorometer 

(ThermoFisher Scientific, Canada). Subsequently, RNA-seq librairies with unique index were 

pooled together in equimolar ratio and the pool was sequenced on a high ouput flowcell on an 

HiSeq 2500 system at the Next-Generation Sequencing Plateform, Genomics Center, CHU de 

Québec-Université Laval Research Center, Québec City, Canada for paired-end 125 pb 

sequencing. After sequencing, raw data were obtained in the fastq format. The software FastQC 

[8] was used for validating the quality of the data and Trimmomatic [9] was used for trimming 

of the adapter content and overrepresented sequences. The mRNAs were aligned to the 

EnsDb.Hsapiens.v86 transcriptome with the Kallisto tool [10].  The R-package tximport [11] 

was used to convert the transcript quantification to gene quantification. Only protein-coding 

genes with a minimum of five read detected across all samples were kept for further analysis. 

Final normalization was performed using the Relative Log Expression (RLE) method [12, 13] 

and data were log2 transformed.  

 

Protein extraction and LC-MS analysis  

Briefly, RHE were grinded via inox beads beating (3min, 30 Hz) in presence of DOC buffer 

(0,5% sodium deoxycholate, 50 mM ammonium bicarbonate, 50 mM DTT, 1μM Pepstatin, and 

cocktail of inhibitors). Supernatant was filter (0.45µm), then precipitated with 4 vol of ice-cold 

acetone. After resuspension in 1% sodium deoxycholate/50mM ammonium bicarbonate, 

proteins were quantified using the Bradford method. Finally, 20 µg were subjected to 

denaturation, reduction, alkylation, and digestion via Trypsin. Peptides were marked via 

isobaric labelling using TMT10-plex and samples were pooled according to the label. For 

alignment between injection, a reference pool containing all samples was produced and labelled 

with TMT10. Labeled pooled samples were fractionated by reverse phase-HPLC at High pH 

into 14 fractions. Each fraction was separated on Dionex Ultimate 3000 nano RSLC 

(15µx500mm C18 3µ 100A) using an acetonitrile gradient (5 to 40% acetonitrile in 90min) 

before injection via electrospray (positive mode, 2100V) into the mass spectrometer 
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OrbitrapTM FusionTM (ThermoFisher Scientific, Canada) for MS3 data acquisition.  Precursor 

data acquisition was performed in 350 to 1500 m/z range, followed by CID fragmentation in 

ion trap and isolation and analysis of 10 MS2 fragments that are then further fragmented via 

HCD fragmentation for detection in orbitrap (MS3). Bioinformatic analysis was performed 

using ProteomeDiscoverer 2.1 against the Human Uniprot database.  

 

Metabolite extraction and LC-MS analysis 

Samples were prepared using the automated MicroLab STAR® system from Hamilton 

Company.  Samples are extracted with methanol under vigorous shaking for 2 min (Glen Mills 

GenoGrinder 2000) followed by centrifugation to recover chemically diverse metabolites.  The 

resulting extract is divided for the following analysis: two separate reverse phases (RP)/UPLC-

MS/MS methods using positive ion mode electrospray ionization (ESI), one RP/UPLC-MS/MS 

using negative ion mode ESI, one HILIC/UPLC-MS/MS using negative ion mode ESI.  

All methods utilize a Waters ACQUITY ultra-performance liquid chromatography (UPLC) and 

a ThermoScientific Q-Exactive high resolution/accurate mass spectrometer interfaced with a 

heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer operated at 35,000 

mass resolution.  The sample extract is dried then reconstituted in solvents compatible to each 

of the four methods. One aliquot is analyzed using acidic positive ion conditions, 

chromatographically optimized for more hydrophilic compounds.  In this method, the extract is 

gradient-eluted from a C18 column (Waters UPLC BEH C18-2.1x100 mm, 1.7 µm) using water 

and methanol, containing 0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA).  

A second aliquot is also analyzed using acidic positive ion conditions but is 

chromatographically optimized for more hydrophobic compounds.  A third aliquot is analyzed 

using basic negative ion optimized conditions using a separate dedicated C18 column. The basic 

extracts are gradient eluted from the column using methanol and water, however with 6.5mM 

Ammonium Bicarbonate at pH 8. The fourth aliquot is analyzed via negative ionization 

following elution from a HILIC column (Waters UPLC BEH Amide 2.1x150 mm, 1.7 µm) 

using a gradient consisting of water and acetonitrile with 10mM Ammonium Formate, pH 10.8. 

The MS analysis alternates between MS and data-dependent MSn scans using dynamic 

exclusion.  The scan range varies slightly between methods, but covers approximately 70-1000 

m/z. 

 

 

TimeOmics approach and clustering 
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The timeOmics approach was used to model and cluster longitudinal multiomics molecules 

with similar expression profiles over time. Briefly, to focus on time-varying features, filter on 

time profiles was applied to keep only molecules with the highest expression fold change 

between the lowest and highest point over the entire time course, as described in [14]. Every 

retained molecule was modelized over the time-course by considering the inter-individual 

variation using the Linear Mixed Model Spline framework [15].  Then the modelized expression 

profiles were clustered in groups of similar expressions over time. This was performed using 

various multivariate projection-based methods implemented in mixOmics [16].  

 

Functional Annotation Clustering and Pathway Analysis 

Over representation analysis (ORA) helps to find enriched and meaningful biological insights 

from interacting biomolecules. This task was achieved using gProfiler2 [17], on each mRNA 

and protein kinetic clusters. We focused on the three Gene Ontology (GO) terms: Biological 

Process (BP), Molecular Function (MF) and Cellular Component (CC), and the two biological 

pathways: KEGG and Reactome. P-values were corrected with gProfiler2 custom multiple 

testing (Benjamini-Hochberg FDR) correction algorithm [18] and only significant terms were 

considered (FDR < 0.05). 

 

Multi-layered network reconstruction (NetOmics) 

The first layer to be reconstructed was the gene inference network from the mRNA. We used 

the ARACNe algorithm to build a network by kinetic cluster but also to build an entire network 

composed of all the mRNA. The second layer was the PPI network. Proteins were connected to 

each other using the BioGRID interaction database. As for the genes, PPI sub-networks were 

built for each kinetic cluster, but we also built an entire PPI network composed of all the 

proteins. These first two layers were combined thanks to two types of links. First, protein-

coding information linked genes to their corresponding proteins. Second, TF-regulated 

information from TF2DNA and TTRUST databases [19, 20] linked proteins to genes. In 

addition, KEGG pathway database was also used to link protein enzymes to metabolite 

reactions. 
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Results 

Longitudinal multi-omics datasets collection 

To characterize the sequential events leading to epidermis differentiation at a multi-molecular 

level, we performed concurrent longitudinal high-throughput transcriptomics, quantitative 

proteomics and metabolomics in a commercial reconstructed human epidermis (RHE) model 

(SkinEthic Episkin Co, Lyon, France). In this regard, human neonatal keratinocytes from four 

individual donors were seeded onto polycarbonate filter inserts and followed over a 28-day time 

course reconstruction. Multi-omics datasets were collected at different timepoints as shown in 

Figure 1A. The time course of epidermis formation and maturation as shown using H&E 

staining revealed a fully stratified epithelium with various layers readily observable, including 

the basal, spinous, and granular layers as early as 5 days in culture. The stratum corneum 

initially appears thin and compact but matures over time (Figure 1B). Principal-component 

analysis (PCA) on RNA-Seq data showed high consistency between biological replicates and 

strong time-dependence for global gene expression patterns, in particular days 1 to 7 (Figure 

1C).  

 

 

 

 

 

 

 

 

 

 

Figure 1. A. Schematic of multi-omics data collected across the epidermal reconstruction time-

course. B. Time course for maturation of the epidermis. Cultures collected at various time points 

(3–28 days) and analyzed by H&E. Representative cultures for each time point are shown. C. 

PCA of RNA-seq data highlight time as the primary axis of variation. A, B, C and D refers to 

the four individual donors.   
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Datasets modelling and clustering (timeOmics) 

We next cataloged the dynamic changes occurring during epidermal reconstitution at the 3-

omics level. To do so, the timeOmics approach was used as previously described [6] to cluster 

multi-omics molecules with similar expression profiles over time. Briefly, longitudinal datasets 

were first pre-processed and normalized to remove biomolecules with missing values and/or 

highly variable over time. Following data pre-processing, a 1.5- or 2-fold expression change 

based cut-off and an FDR < 5% on time points were used to remove proteins and metabolites, 

and genes, respectively which are not impacted by time effect. We thus identified 1012 genes, 

222 proteins and 226 metabolites with a dynamic expression across the entire time course 

following calcium-induced keratinocytes differentiation. Heatmaps with their patterns of 

expression are shown in Figures 2A-C. Hierarchical clustering of time points during epidermal 

reconstitution revealed strong time-dependence for global expression patterns. For instance, 

gene and protein expression profiles were distinctly similar between days 1 and 3 compared 

with other time points. A similar pattern was observed for cultures at days 5 and 7, and the 

subsequent patterns of gene expression from days 10–28 were similar between them and distinct 

from the earlier time points. Within this last cluster, we distinguished sub-clustering of days 

10-14, 17-21 and 25-28, corresponding simultaneously to optimum differentiation of RHE 

model (days 10-17) and it’s degradation as the stratum corneum continues to thicken (days 21–

28). Metabolite expression profiles on the other hand, were quite similar as those of genes and 

proteins except for day 1 which clustered separately from the later times points, and for days 5 

and 7 who shared a similar pattern with day 10 (Figures 2A-C). Furthermore, we investigated 

expression profiles of biomolecules detected on both gene and protein levels. A total of 81 

mRNA-protein pairs were thus analyzed whose expression ratios are illustrated in Figure 2D. 

A clustering analysis clearly identified patterns of temporal delay between mRNA and protein 

expression, supporting the fact that the relation between gene and protein expression changes 

is not linear, including patterns of gene and protein expression changing either in the same 

direction (black box) or in opposite directions (green box) (Figure 2D).  

We then modelled the expression of every biomolecule including the variations of the four 

replicates for each of the eleven timepoints. This revealed 8 distinct subgroups of clusters 

characterized by their initial levels of abundance and variation during keratinocyte 

differentiation, with either a general increase or a general decrease in abundance across the time 

course (Figure 2E). The distribution of biomolecules among the different clusters is given in 

Table 1. To functionally annotate the subgroups of biomolecules, we employed a cluster-wide 
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enrichment analysis on genes and proteins using the gProfiler2 tool [17] (Tables 2-3 and data 

not shown). Cluster 1 comprised a total of 327 mRNAs, 62 proteins and 56 metabolites. Since 

it comprised the most of biomolecules (a total of 445 molecules out of 1460 (~30%), highlighted 

in grey in Table 1), we considered this cluster as an example for upcoming analyses to illustrate 

the obtained results. Biomolecule expression increased from the progenitor state (day 1) 

through days 7-10 and reached a plateau at later timepoints (Figure 2E). The most enriched 

genes in this cluster showed significant distribution among skin development, including 

epithelial differentiation, cornification, peptide cross-linking, lipid metabolism, and ceramide 

biosynthesis (Figure 2F and Table 2). Genes from the epidermal differentiation complex (EDC) 

such as filaggrin (FLG), loricrin (LOR), cornulin (CRNN), small proline rich protein (SPRRs) 

and late cornified envelope (LCEs), genes from the lipid biosynthesis metabolism such as 

ceramide synthases (CERS3 and CERS4) and lipoxygenases (ALOX12B and ALOXE3), and 

genes participating in the cornified envelope formation such as transglutaminases (TGM3 and 

TGM5) were all highly represented within this cluster (Table 2, in bold). In addition, we found 

significant enrichment for “regulation of protein tyrosine kinase activity” and “antimicrobial 

signaling”. Focusing on specific functions of the modulated proteins of cluster 1, many of them 

were related to epidermis development, peptide cross-linking, immune function, export, 

secretion signaling, and small molecule metabolism (Figure 2G and Table 3). Interestingly, 

several proteins from the EDC were identical to those observed on the gene level, in particular 

FLG, LOR, and SPRR2E. However, other members from the EDC complex as the S100 calcium 

binding proteins S100A8, A9 and S100P were exclusively identified for proteins. Additionally, 

other molecules required to promote keratinocyte differentiation such as the non-apoptotic 

caspase CASP14 and the Homeodomain-only protein HOPX [21] were found to be expressed 

on both levels. Altogether, these findings are consistent with the formation of the skin barrier 

and other defenses of the epithelium, and thus are associated with keratinocyte late 

differentiation state. Moreover, they confirm that the consecutive integration of transcriptomics 

and proteomics data improves characterization of mechanisms related to epidermal 

reconstruction.  
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Figure 2. Hierarchical clustering of (A) gene, (B) protein and (C) metabolite expression 

profiles from RHE model demonstrates time dependence of expression changes. D. Heatmap 

on gene-protein pairs shows temporal delay between mRNA and protein expression. E. Clusters 

of gene, protein, and metabolite expression dynamics along differentiation. F-G.Top enriched 

pathways among genes (F) and proteins (G) of cluster 1.   
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Table 1. Distribution of genes, proteins and metabolites among the 8 formed clusters. 

Table 2. Top enriched pathways of genes in cluster 1  

Table 3. Top enriched pathways of proteins in cluster 1 
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Longitudinal multi-omics data Network construction (NetOmics) 

Furthermore, we highlighted the interactions between the multiple omics data by building a 3-

layers network for each cluster: a gene inference layer from the mRNA using the ARACNe 

algorithm [22], a protein-protein interaction layer build from BioGRID known interactions, and 

a metabolite layer from KEGG pathways. The first two layers were combined thanks to two 

types of links. First, protein-coding information linked genes to their corresponding proteins. 

Second, TF-regulated information from TF2DNA and TTRUST [19, 20] databases linked 

proteins to genes. Focusing on cluster 1, the constructed network was composed of 420 gene-

gene interactions, 87 gene-protein interactions, 320 protein-protein interaction and 126 protein-

metabolite interactions (Figure 3A). For instance, beyond being clustered together, we found 

connections (edges) between the HOPX protein/transcription factor (TF) (red circle, Figure 3A 

and Figure 3B) and the FLG and LOR genes reflecting a functional interaction between these 

biomolecules. Indeed, this is concordant with previous reports showing that experimental 

HOPX depletion in keratinocytes results in LOR and FLG gene expression regulation [21, 23]. 

Then, we focused on the glutaredoxin (GLRX) gene-protein pair in the network (Figure 3C, red 

arrows). GLRX is a small molecular-weight protein and a member of the thioredoxin family. 

Previous reports have shown that it plays a protective role against oxidative stress in lung and 

neuronal cells [24]. Moreover, glutaredoxin deficiency has been shown to promote activation 

of the transforming growth factor beta pathway in airway epithelial cells, and suggest a 

mechanism that involves the plasticity of basal cells, the stem cells of the airways [25]. GLRX 

is connected to the superoxide dismutase (SOD1) protein (blue arrow) which is an important 

antioxidative enzyme that protects skin from oxidative stress. SOD1 is itself connected to a 

group of molecules, in particular the transaminase enzyme GOT1, the glyoxalase HAGH and 

the creatine kinase CKB (yellow arrows), all of them described to be associated with the 

oxidative metabolism [26-28]. For example, increased expression of GOT1 fuels oxidative 

metabolism of cells cultured in low pH by enhancing the non-canonical glutamine metabolic 

pathway, and cell survival in low pH is reduced upon depletion of GOT1 due to increased 

intracellular ROS levels [26]. Glyoxalase pathway is a well-conserved antioxidant defense 

system and responds to the constantly changing cellular environment. An impaired glyoxalase 

system can result in increased oxidative and dicarbonyl stress and is implicated in various 

disease conditions [27]. Collectively, these results provide a potential role for the induction of 

antioxidative pathway during keratinocyte differentiation which needs to be further explored. 
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The identification of this pathway was facilitated thanks to net construction from interacting 

molecules of distinct cellular omics layers.  

 

Figure 3. Network representation of biomolecules belonging to cluster 1. A. 3-layer 

network was built with a gene inference layer network from the mRNA using the ARACNe 

algorithm, a protein-protein interaction layer build from BioGRID known interactions, and a 

metabolite layer from KEGG pathways. The first two layers were combined thanks to two types 

of links. First, protein-coding information linked genes to their corresponding proteins. Second, 

TF-regulated information from TF2DNA and TTRUST databases linked proteins to genes. B. 

Focus on HOPX network. C. Focus on glutaredoxin network and connection to other 

biomolecules.   

 

Discussion  

It is well known that the differentiation process of keratinocytes is regulated by several 

biological signaling pathways [1-4], but up to now, a capture of interactions between different 

molecular layers composing these pathways has lacked. Here, we present a resource to help 

deciphering the regulatory mechanisms occurring during epidermal reconstruction.  

Dense longitudinal profiling of the transcriptome, proteome and metabolome throughout the 

differentiation process first enabled the identification of the dynamic trajectories of a set of 

1012 genes, 222 proteins and 226 metabolites. We show that the trajectories of genes and 

proteins composing the cluster 1 were associated with a late differentiation state, and 
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interestingly, an agreement between transcriptomic and proteomic analyses on overrepresented 

pathways was obtained, with some peculiarities for each layer. The RHE model appears to be 

characterized by two phases, the initial formation of general epithelium (days 1-7) and the 

maturation of epidermal tissue and barrier formation (day 10 onwards). Previous studies 

exploring keratinocyte differentiation kinetics only by transcriptomic approaches on in vitro 

skin models reported similar results [2, 29]. Enrichment results of all clusters taken together 

will help to identify the molecular manipulation for a pathway of interest might be best studied 

by introducing changes to the culture condition at different time points of the epidermis 

reconstruction program. 

Taking full advantage of the interactions between profiled omics and their interdependencies, 

we were able to identify an increase in the antioxidative stress players during the phases of 

epithelial development and barrier formation. Epidermis is particularly exposed to oxidative 

stress, either from environmental insults or because of specific impairments in antioxidant 

status resulting from pathologies or aging. Traditionally, antioxidant products are exogenously 

provided to neutralize pro-oxidant species. In our study, it appears that an endogenous 

antioxidant defense pathway is stimulated to ensure a proper differentiation process. This seems 

of particular interest for a positive maintenance of multiple features of epidermal organization 

and barrier formation.  

 

Conclusion 

We show in this study that the simultaneous analysis of interactions of biomolecules by means 

of multi-omics data clustering an integration is an invaluable approach to shed light on distinct 

stages underlying epidermis reconstruction processes, which is a powerful base of knowledge 

to develop new cosmetics and dermatologically active ingredients.  
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