Crystal growth and magnetic properties of rare-earth (RE) palladium silicides, RE₂PdSi₃

Mayoh D.A.^{1*}, Štefančič A¹., Lees M.R.¹ and Balakrishnan G.¹

*Lead Presenter: G.Balakrishnan@warwick.ac.uk

The rare-earth palladium silicides are known for exhibiting a diverse range of magnetic behaviours dependent on the lanthanide used in the compounds. Recent studies have shown that Gd_2PdSi_3 exhibits a giant topological hall effect and skyrmion-like spin textures driven by magnetic frustration in the compound. Previous studies show Dy_2PdSi_3 has an antiferromagnetic to spin glass transition. Similarly, large magneto-crystalline anisotropy has been reported in Tb_2PdSi_3 , Ho_2PdSi_3 , Er_2PdSi_3 and Tm_2PdSi_3 . Here, we present the results of the single crystal growth of the family of RE_2PdSi_3 (where RE = Gd, Er, Nd, Er, Er) by the optical floating zone technique along with a discussion of the structural and magnetic properties of these materials.

¹ Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom.