Li₃Ba₂Gd_{3-x}(WO₄)₈: Eu reddish orange phosphors for potential application in wLED

Zhonghuan Zhang^a, Abir Douzi^{a,b}, Sami Slimi^a, Rosa Maria Solé^a, Magdalena Aguiló^a, Francesc Díaz^a, Ezzedine Ben Salem^b, Xavier Mateos^{a,*}

^aUniversitat Rovira i Virgili (URV), Física i Cristal · lografia de Materials (FiCMA), Marcel·li Domingo 1, 43007, Tarragona, Spain.

^bI.P.E.I. of Monastir, Unit of Materials and Organic Synthesis, University of Monastir 5019, UR17ES31, Tunisia

Reddish orange Li₃Ba₂Gd_{3-x}(WO₄)₈:xEu³⁺ (0.5 \leq x \leq 10 at.%) phosphors were successfully synthesized by the conventional solid-state reaction method at high temperature in air atmosphere. The phosphors crystallized in the monoclinic system with C2/c space group and 2/m point group. The unit cell parameters are a= 5.2149(4) Å, b=12.7447(1) Å, c=19.2058(3) Å, $\alpha = \gamma = 90^{\circ}$, $\beta = a^{c} = 91.9315(1)^{\circ}$ and $V_{calc} = 1275.748(2) \text{ Å}^{3}$. After excitation at 395 nm, the phosphors showed red emission with a peak centered at 614 nm which was attributed to the $^5D_0 \rightarrow ^7F_2$ electric dipolar transition of Eu³⁺ ions. [1] At the same time, the influence of different Eu³⁺ ion concentration on the PL intensity are also discussed. The concentration quenching mechanism was attributed to the dipole-quadrupole interaction and the critical distance for energy transfer among Eu³⁺ ions was calculated to be 7.409 Å. The values of the asymmetry ratio $[(^5D_0 \rightarrow ^7F_2)/(^5D_0 \rightarrow ^7F_1)]$ of the synthesized phosphors revealed that Eu³⁺ occupied the distorted cationic sites with a non-centrosymmetric position. The Judd-Ofelt theory was employed to evaluate the intensity parameters and radiative properties. The quantum efficiency showed the highest value for Li₃Ba₂Gd₃(WO₄)₈: 4 at.% Eu³⁺ being 26.35. The fluorescence decay times were also determined for the Li₃Ba₂Gd₃(WO₄)₈:Eu phosphors. Besides, the color coordinates of Li₃Ba₂Gd₃(WO₄)₈:3 at.%Eu were defined as (0.6302, 0.3648), close to those of standard red light (0.670, 0.330) and also showed high color purity (98.42%) under excitation at 395 nm. Furthermore, the Li₃Ba₂Gd₃(WO₄)₈: 3 at.% Eu phosphors showed good thermal stability with an activation energy of 0.428 eV. The above results revealed that the Eu³⁺-doped Li₃Ba₂Gd₃(WO₄)₈ phosphors can serve as potential reddish orange emitting phosphors for near-UV pumped WLEDs.

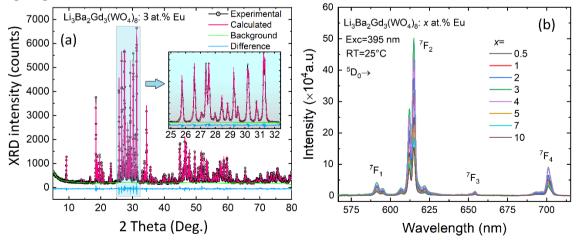


Fig 1 (a) Rietveld refinement plots for $\text{Li}_3\text{Ba}_2\text{Gd}_3(WO_4)_8:3\%\text{Eu}$, the experimental profile-black dots ; the calculated pattern-red line; the difference plot-blue line and the background-green line; *Inset*: zoomed view in the range between 25 and 32°(b) Emission spectra of $\text{Li}_3\text{Ba}_2\text{Gd}_3(WO_4)_8:x}$ at.% Eu^{3+} (0.5 \leq x \leq 10) phosphors ; λ_{ex} =395 nm.

References

[1] X. Huang, Red phosphor converts white LEDs, Nat. Photonics. 8 (2014) 748–749.

^{*} Correspongind author: xavier.mateos@urv.cat