ICCGE 2023 Abstract ## Thermodynamic and kinetic modulation of methylammonium lead bromide crystallization revealed by *in situ* monitoring Amnon Ortoll-Bloch,^{1,&} Ying Chen,² Nancy M. Washton,² Karl T. Mueller,² James De Yoreo,^{2,3} Jinhui Tao,^{2,*} and Lara Estroff,^{4,5,*} - ¹ Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States. - ² Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States. - ³ Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States. - ⁴ Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States. - ⁵ Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States. - & Current affiliation: Department of Chemistry, Bowdoin College, Brunswick, Maine 04011, United States. **Abstract:** Elucidating microscopic crystal growth mechanisms requires observing dynamic, molecular-level surface features during growth by *in situ* monitoring. Herein, fluid-cell atomic force microscopy (AFM) was used to determine how formic acid (FAH) modulates the thermodynamics and kinetics of the crystal growth of CH₃NH₃PbBr₃ (MAPbBr₃), a model hybrid organic-inorganic perovskite (HOIP) with promising optoelectronic properties. The growth of MAPbBr₃ in dimethylformamide (DMF) proceeds through the spreading of atomic crystal steps generated at screw dislocations on the {100} surface. Temperature-dependent step velocity measurements demonstrate that with increasing concentration, FAH decreases both the solubility of MAPbBr₃ and the kinetic coefficient (β) of step movement. Moreover, solution ¹H-NMR measurements provide insight into molecular-level changes in solution speciation caused by FAH. FAH increases the lifetime of the methylammonium (MA⁺) ions and promotes the association of MAPbBr₃, thus tuning the solubility of the perovskite. FAH also alters the molecular tumbling motion and bulk diffusion of the MA⁺ ions, possibly via H-bonding. Our findings establish a direct correlation between the mesoscale crystal growth kinetics and the molecular-scale interactions between organic additives and constituent ions, providing unprecedented insights for developing predictive syntheses of HOIP crystals with defined size, crystal habit and shape, and defect distribution.