Novel photonic materials enabled by crystal growth

- D. A. Pawlak^{1,2,3}, P. Paszke^{1,2}, P. Piotrowski^{1,2}, M. Tomczyk^{1,2}, K. Sadecka¹, K.
- Bandopadhay¹, K. Markus¹, H. B. Surma¹, A. Materna¹, J. Toudert¹, A. Bellardini⁴, C. Sibilia⁴ *lead presenter: Dorota, Anna, Pawlak@ensemble3.eu
- 1 ENSEMBLE³ Centre of Excellence, Poland
- 2 Faculty of Chemistry, University of Warsaw, Poland
- 3 Lukasiewicz Research Network Institute of Microelectronics and Photonics, Poland
- 4 University of Rome "La Sapienza", 16 A. Scarpa, Rome, 00161, Italy.

Recently, we proposed the idea of utilizing directional solidification as a method for manufacturing metamaterials [1] and plasmonic materials [2]. We develop two methods: (i) method based on directionally-grown self-organized eutectic structures [3-5]; and (ii) NanoParticles Direct Doping method (NPDD) based on directional solidification of dielectric matrices doped with various nanoparticles [6-8]. In both of these methods we can easily use all available resonant phenomena to develop materials with unusual electromagnetic properties. Utilizing described above methods we demonstrated: (i) volumetric eutectic-based material with localized surface plasmon resonance at visible wavelengths [9-10]; (ii) enhanced luminescence and up-conversion processes in the eutectic material exhibiting LSPR and codoped with erbium ions [6]; (iii) volumetric matrix-nanoparticles-based materials with plasmonic resonances at visible [6, 11] and IR wavelengths based on silver (Ag), antimony-tinoxide (ATO) and titanium nitride nanoparticles (TiN); (iv) matrix-nanoparticles-based composite with enhanced photoluminescence at the telecommunication frequency of 1.5 µm; (v) material with subwavelength transmission at IR frequencies [12]; (vi) narrow band filter and polarizer [13-14]; (vii) surface enhanced Raman scattering in a bulk eutectic material enabling enhancement of selected Raman modes [15], (viii) materials with enhanced Faraday effect; (ix) materials for photoanodes in photoelectrochemical cells for generation of hydrogen [16-17], (x) topological insulator heterostructures. All these results will be described.

Acknowledgements

The authors thank the ENSEMBLE³ Project carried within the International Research Agendas Programme (MAB/2020/14) of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund and the Teaming Horizon 2020 programme of the European Commission (GA No. 857543) for supporting this work.

References

- [1] D. R. Smith, et al. Science, 305 (2004) 788; A. M. Urbas, et al., J. Optics, 18 (2016) 093005.
- [2] L. Barnes, et al., Nature, 424 (2003) 824.
- [3] D. A. Pawlak, et al. Chem. Mater. 18 (2006) 2450.
- [4] D. A. Pawlak, et al. Crystal Growth & Design, 8 (2008) 1243.
- [5] D. A. Pawlak, et al. Adv. Funct. Mat. 20 (2010) 1116.
- [6] M. Gajc, et al. Adv. Funct. Mat. 23 (2013) 3443.
- [7] R. Nowaczynski, et al. PPSC 36 (2019) 1800124.
- [8] M. Gajc, et al. Sci. Rep. 8 (2018) 13425.
- [9] K. Sadecka, et al. Adv. Opt. Mat. (2015) 3, 381.
- [10] K. Sadecka, et al. Opt. Express (2015) 23, 19098.
- $[11] \ https://www.facebook.com/fmlaboratory/videos/608375495898423/ \ \ demonstration \ of \ the \ plasmonic resonance in materials obtained by NanoParticle Direct Doping method.$
- [12] V. Myroshnychenko, Opt. Express (2012) 20, 10879.
- [13] P. Osewski, et al. Adv. Opt. Mater. 8 (2020) 1901617.
- [14] E. Petronijevic, et al. Adv. Mater. (2022) 2206005.
- [15] K. Szlachetko, et al. Nanophotonics 9 (2020) 4307.
- [16] K. Wysmulek, et al. Appl. Catalysis B: Environ. (2017) 206, 538.
- [17] K. Kolodziejak, et al. J. Catalysis (2017) 352, 93.