Growth of NaBaCr₂(PO₄)₃ crystals by high temperature solution method

Peña A^{1*}, Menaert B¹, Bread Y², Toulemonde O³.

*lead presenter: alexandra.pena@neel.cnrs.fr

1 Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France

2 Laboratory Crismat, UMR6508 CNRS, Normandie University, ENSICAEN, UNICAEN, 6 bd Maréchal Juin, 14050 Caen cedex 4, France

3 CNRS, Université de Bordeaux, ICMCB, Pessac F-33608, France

Frameworks built with transition metals MO_6 octahedra and $(XO_4)^{n-}$ polyanions $(X = phosphorus, chalcogen, silicon, aluminium or some 3d and 5d transition metal) offer the same kind of chemical flexibility that the well-known perovskite and/or spinel-type structures. Fundamental interest in polyanionic frameworks regarding magnetic properties appears quite new. Using <math>(XO_4)^{n-}$ polyanions as a building element, rather than the more traditional oxo anion, will help to obtain ferroic solids. NaBa_{1-x}Sr_xCr₂(PO₄)₃ solids, ceramics, with x=0 and 1 were recently reported to show intriguing physical properties (hysteric magneto capacitance signal when x=0 and a parallel magnetic long-range ordering when x=1) [1]. In order to investigate the physical properties / nuclear relationship with respect to an external stimulus single crystals of NaBa_{1-x}Sr_xCr₂(PO₄)₃ with Langbeinite type structure are needed.

Several Langbeinite type crystals ($P2_13$ space group) have already been obtained by high temperature solution growth in molten phosphate salts but single crystals of NaBa_{1-x}Sr_xCr₂(PO₄)₃ have never been obtained by this method [2,3]. In this work we study three systems (Na₂O - NaBaCr₂(PO₄)₃ - NaPO₃ & RbF - NaBaCr₂(PO₄)₃ - RbPO₃ & Na₂O - NaBaCr₂(PO₄)₃ - WO₃) in order to determine if the crystals of interest can be grown. In all the three systems NaBaCr₂(PO₄)₃ crystals have been obtained by spontaneous nucleation but in phosphate fluxes a compositional change occurs during the crystal growth process due to a high evaporation of the solution. In molten tungstate salts no evaporation of the solution is observed but tiny crystals belonging to a secondary phase (Cr₂WO₆) have been obtained (Fig. 1).

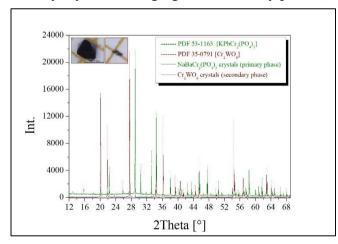


Figure 1. Powder x-ray diffraction of the crystals obtained by spontaneous nucleation from a high temperature solution of the chemical the system $Na_2O-NaBaCr_2(PO_4)_3-WO_3$. A picture of one $NaBaCr_2(PO_4)_3$ crystal (left hand side) and several Cr_2WO_6 crystals (right hand side) are shown in the inset.

Solutions with different compositions of the system $Na_2O - NaBaCr_2(PO_4)_3 - WO_3$ are under study in order to determine the compositional zone where only $NaBaCr_2(PO_4)_3$ crystals are stable.

^[1] Souiwa K et al. Synthesis and characterization of the phosphates $Na_{1+x}Mg_{1+x}Cr_{2-x}(PO_4)_3$ (x=0;0.2) and $NaZnCr_2(PO_4)_3$ with the α -CrPO₄ structure. J Alloys Compd. 2015;627:153-160.

^[2] Carvajal JJ et al. Growth and structural characterization of $Rb_2Ti_{1.01}Er_{0.99}(PO_4)_3$. Chem. Mater. 2003;15:204-211.

^[3] Peña A et al. Yb:Ta:RbTiOPO₄, a new strategy to further increase the lanthanide concentration in crystals of the KTiOPO₄. Chem. Mater. 2007;19:4069-4076.