Growth and characterization of $Dy_{(1-x)}Sm_{(x)}MnO_3$ single crystals by optical floating zone technique Arun Kumar¹, P. Aravinthkumar², G. Anandhababu²*, P. Vijayakumar³ and S. Ganesamoorthy^{3,4} The rare-earth (RE) manganites with general formula REMnO₃ (RE^{3+} = La – Yb, Y) display wide ranging functional properties with potential for technological applications. Depending on growth ambience and the size of RE^{3+} ions, these manganites crystallize either in orthorhombic Pnma space group symmetry or hexagonal P63cm space group symmetry. In the present work, we understand the role of Sm³⁺ substitution on DyMnO₃ in the air atmosphere. Dy₍₁₋ _x)Sm_(x)MnO₃ powders were synthesized by solid-state reaction and single crystals were grown using optical floating zone technique for the composition range $0 \le x \le 0.75$. Energy dispersive x-ray spectroscopicy (EDS) confirms the nominal composition for all the grown crystals of $Dy_{(1-x)}Sm_{(x)}MnO_3$. Laue diffraction taken on the grown crystals confirms the orthorhombic (o) symmetry. Our LeBail refinements using synchrotron X-ray powder diffraction data on powders obtained after crushing the crystals also confirm the orthorhombic phase with *Pnma* space group for the composition range $0 \le x \le 0.75$ (see Figure 1). The unit cell volume and lattice parameters are shown to increase with increasing Sm³⁺ substitution at the Dy³⁺ site in DyMnO₃. This can be attributed to the fact that the ionic radius of Sm³⁺ is larger than that of Dy³⁺ and hence substitution of Dy³⁺ by Sm³⁺ would lead to lattice expansion. The physical and magnetic properties of these single crystals will be reported. **Figure 1**: Observed (red filled circle), calculated (black continuous line) and difference profiles (blue continuous line) obtained after LeBail refinements of the synchrotron X-ray diffraction data of $Dy_{(1-x)}Sm_{(x)}MnO_3$. Vertical tick marks the Bragg peak positions. ¹Department of Physics, Indian Institute of Science Education and Research Pune-411008, India. ²Department of Physics, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, India. ³Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India. ⁴Homi Bhabha National Institute, Mumbai 400 094, India. ^{*}lead presenter: anandcgc@gmail.com