Salts of amino acids with a dimeric cation of the $[A(1)^+ \cdots A(2)]$ type with polar symmetry

Tonoyan GS¹, Giester G², Szafrański M³, Petrosyan AM^{1*} *lead presenter: aram.m.petrosyan@gmail.com

¹ Institute of Applied Problems of Physics, Yerevan, Armenia ² Institute of Mineralogy and Crystallography, Vienna, Austria, ³ Adam Mickiewicz University, Poznań, Poland

Recently, we discovered a new class of salts containing different amino acids. The vast majority (47) of them are of a type $[A(1)H\cdots A(2)]X$, where A(1) is protonated and A(2) zwitterionic amino acid: glycine (Gly), sarcosine (Sar), dimethylglycine (DMG), betaine (Bet), β -alanine (β-Ala), L-proline (L-Pro). X stands for Cl, Br, I, NO₃, BF₄, ClO₄ and NH₂SO₃ anions. The following dimeric cations were established: (GlyH···Sar), (GlyH···DMG), (SarH···DMG), (DMGH···Sar), (SarH···Bet), (BetH···Sar), (DMGH···Bet), (BetH···DMG), (L-ProH···Sar), $(\beta$ -AlaH···Sar), $(\beta$ -AlaH···DMG), $(\beta$ -AlaH···Bet) and $(\beta$ -AlaH···L-Pro). Sixteen of these salts crystallize with polar symmetry: $[(SarH \cdots DMG)BF_4, (SarH \cdots DMG)ClO_4 - space group Pc)],$ [(DMGH···Sar)ClO₄ - s. g. $Pna2_1$], [(L-ProH···Sar)BF₄, (L-ProH···Sar)ClO₄, (L-P ProH···Sar)NO₃, (L-ProH···Sar)Br, (L-ProH···Sar)I - s. g. C2], $[(\beta$ -AlaH···DMG)I, $(\beta$ -AlaH···DMG)BF₄, (β -AlaH···DMG)NH₂SO₃ - s. g. $Pna2_1$], [(β -AlaH···Bet)Br, (β -AlaH···Bet)I – s. g. Cc], $[(\beta-AlaH···L-Pro)Cl, (\beta-AlaH···L-Pro)Br, (\beta-AlaH···L-Pro)I – s. g.$ $P2_1$]. The last three salts were described in our recently published article [1]. All these salts are potential pyroelectric or ferroelectric materials, the same as the recently reported ferroelectric (DMGH···DMG)Cl [2], as well as candidates for piezoelectric and nonlinear optics applications. Protonation in a pair of amino acids may depend on the anion, as in the cases of (DMGH···Bet)ClO₄·H₂O $(BetH\cdots Sar)NH_2SO_3\cdot 0.5H_2O$, (SarH····Bet)ClO₄ and (BetH···DMG)I.H₂O or, for the same anion, on the crystallization conditions, as in the case of (SarH···DMG)ClO₄ (crystallized from water solution) and (DMGH···Sar)ClO₄ (crystallized from acetic acid).

Work on the study of the properties of these salts is in progress.

Acknowledgments

The work was supported by the Science Committee of RA, in the frame of the research project № 18T-1D033. Tonoyan G.S. also thanks the "PhD Support Program 2022", which is implemented by the Enterprise Incubator Foundation with support of PMI Science.

References

- [1] Tonoyan GS et al. Salts containing different amino acids: Salts with β -alaninium L-proline dimeric cation. J Mol Struct 2022; 1252:132171.
- [2] Szafrański M et al. Above-room-temperature ferroelectricity and piezoelectric activity of dimethylglycinium-dimethylglycine chloride. Mater Des 2022; 220:110893.