Growth and Improved Properties Single Crystal α–LiIO$_3$ Doped with Amino Acids

Danghyan AA*, Sukiasyan RP1, Apreyan RA1, Atanesyan AK1.
*Danghyan AA: ata.ysu@mail.ru
1Institute of Applied Problems of Physics, NAS of Armenia, 25 Nersessyan Str., 0014Yerevan, Armenia

Crystals with nonlinear optical, pyroelectric, piezoelectric, acousto-optical properties are widely used in various technologies. One of the essential crystals for technology is hexagonal modification of lithium iodate (α-LiIO$_3$). It has the above-listed properties [1]. In recent years studies have shown that doping a crystal with amino acids improves the non-linear optical properties of the crystal [2].

For the first time, such research for single crystals of α-LiIO$_3$ was carried out in our laboratory of crystal growth. Single crystals of α-LiIO$_3$ were grown from low-temperature aqueous solutions doped with potassium permanganate [3], L-alanine, L-lysine, L-glycine and L-valine. Based on the positive results of our previous research, this study presents the effect of doping of the amino acids L-arginine, L-nitroarginine and L–histidine on α-LiIO$_3$ single crystals. The crystals were grown by the method described in Hovhannesyan AA et al [4]. The solution doped with L-histidine decomposed and high-quality crystals were grown from solutions doped with L-arginine and L-nitroarginine (Fig. 1).

![Figure 1. Single crystals of a) pure α–LiIO$_3$, b) α–LiIO$_3$ doped with L-arginine and c) α–LiIO$_3$ doped with L-nitroarginine.](image)

Thermal properties, vibrational spectra and second harmonic generation activity were assessed. Studies showed that the optical quality and physicochemical properties of the crystal are improved in the presence of amino acids. The obtained experimental data indicated that the second harmonic generation activity of the crystals of α–LiIO$_3$ grown with L–arginine and L–nitroarginine dopants is 1.5 times higher than that of pure α–LiIO$_3$.

This work is supported by the Ministry of science and education RA, project No.21T–2F116.

References