Novel visible-infrared Faraday crystal Tb₃Al₃Ga₂O₁₂ exhibiting superior magneto-optical performance

Xiuwei FU^{1*}, Xianhui XIN¹, Zhitai JIA¹, Xutang TAO¹.

*lead presenter: fxw@sdu.edu.cn

1 State Key Laboratory of Crystal Materials, Shandong University, China

In the past decades, the $Tb_3Ga_5O_{12}$ crystal has long been market dominating for visible near-IR Faraday applications. However, its relatively low Verdet constant as well as heavy volatilization of Ga_2O_3 during growth make it challenging to meet the continuous development of advanced lasers. In this work, a novel $Tb_3Al_3Ga_2O_{12}$ (TAGG) crystal has been grown and investigated for the first time [1]. We demonstrated that the TAGG crystal possesses a better visible transparency, a higher thermal conductivity and a larger Verdet constant than $Tb_3Ga_5O_{12}$ crystal. Moreover, due to the greatly reduction of Ga-content, it is more capable to fabricate large-size low cost single crystal. TAGG crystal is therefore a very promising material for commercial magneto-optical applications in the visible-near IR wavelength region.

References

[1] Xianhui XIN, Yuankai HAO, Lei LIU, Junai LV, Jian ZHANG, Xiuwei FU*, Zhitai JIA*, and Xutang TAO. Tb₃Al₃Ga₂O₁₂: A novel visible-infrared Faraday crystal exhibiting superior magneto-optical performance. Crystal Growth & Design. 2022; 22: 5535-5541.