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Knowledge of fundamental characteristics of solid-state systems such as electron dispersions,
Fermi surface, electron-boson coupling, etc. resolved in electron momentum Kk is essential for
synthesis of materials tailored to particular applications. Whereas for crystalline surfaces such
information is delivered by angle-resolved photoelectron spectroscopy (ARPES), pushing this
technique to soft-X-ray photon energies around 1 keV adds up large probing depth, sharp
definition of three-dimensional k, and chemical-state specific resonant photoexcitation. These
spectroscopic advantages allow access to 3D bulk materials, buried interfaces/heterostructures
and impurity systems actual for electronic, spintronic and quantum devices.

Bulk materials. — Applications of soft-X-ray ARPES to bulk materials are based on a sharp
definition of three-dimensional k resulting from the enhanced photoelectron delocalization.
Examples include 3D-nested Fermi surface of VSe, forming exotic charge-density waves [1],
3D band dispersions and band-dependent electron-phonon interaction in complex oxides [2],
3D topological structures such as Weyl cones and chiral fermions [3], etc.

Buried heterostructures. — Semiconductor systems are
illustrated by AIN/GaN high-electron-mobility transistor
(HEMT) heterostructures, where soft-X-ray ARPES resolves
the anisotropic Fermi surface (Figure) and band dispersions of
the interfacial quantum-well states [4]. An example of
superconductor/semiconductor interfaces is NbN/GaN, where
a k-space separation of the Fermi states in NbN from the
valence states in GaN protects their superconductivity [5]. A
paradigm example of oxide interfaces is LaAlO,/SrTiO;.
Resonant photoexcitation at the Ti L-edge resolves here the
interfacial subbands, whose peak-dip-hump spectral function identifies a multiphonon
polaronic nature of the charge carriers intrinsically limiting their mobility [6].

Impurity systems. — An example of impurity systems is Ga(Mn)As the dilute magnetic
semiconductor. Resonant photoexcitation at the Mn L-edge identifies energy alignment and
hybridization of the Mn impurities with host GaAs, disclosing the mechanisms of the
ferromagnetic electron transport [7]. Other cases include magnetic V impurities in topological
Bi;Se, competing with the quantum anomalous Hall effect, etc.
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