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Introduction 
In bulk single crystal growth, the understanding of transport structures in the growth melt, 

such as fluid flow, and temperature and concentration distributions, is essential for the growth 
of high-quality crystals. Direct observation of such transport structures during growth is 
difficult. Modelling by Computational Fluid Dynamics (CFD) offers a powerful tool for this 
purpose and provides essential insight to control these transport structures in the melt. 
However, predictions by CFD requires long computations giving rise to a high computational 
cost. To overcome this difficulty, we proposed a new technique, "Physics Informed Neural 
Networks (PINNs)[1]" for fast predictions.  
 
Numerical method 
Because PINN learns the governing equations and the boundary conditions, PINN has 

advantages such as (1) exact results which can be achieved by CFD, and (2) quick predictions 
which can be obtained by Neural Networks.  In this study, PINN is constructed as shown in 
Fig. 1.  In the model, the governing equations are momentum, continuity, and energy 
equations with the Poisson equation of the electrical potential. The input parameters are x = 
(x, y, z, Tl, Tr, Th, h), where x, y, and z are the cartesian coordinates and Tl, Tr, Th the obtained 
temperatures at the bottom center of the crucible, the surface edge, and the bottom edge of the 
melt, respectively. h is the melt height.  
 

Results  
Figure 2 shows the temperature field, and the streamlines colored by the magnitude of the 

melt flow obtained by CFD and PINNs. As shown in the figure, the predicted distributions by 
PINNs are consistent with the results by CFD. The CPU and GPU times for CFD and PINNs 
were about 3 hours and about 0.1 s, respectively. Because PINN is a mesh-free method, 
variation of the calculation domain, such as melt depth variation, accompanying crystal 
growth can become available without mesh reconstruction.   
 

Conclusion and Future work 
PINNs that can quickly and exactly predict transport phenomena in crystal growth was 

successfully developed. In future the effect of rotation will be included for an optimal control. 
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Fig. 1. The architecture of PINNs. 
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Fig. 2. The temperature (left) and melt flow velocity 
(right) distributions by CFD (top) and PINNs (bottom). 
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