Bismuth tri-iodide - Graphene 2D material

L. Fornaro*, C. Maidana, H. Bentos Pereira, A. Noguera, A. Olivera *Ifornaro@gmail.com
Grupo de Desarrollo de Materiales y Estudios Ambientales, Departamento de Desarrollo Tecnológico, CURE, Universidad de la República, Rocha, Uruguay

A plethora of 2D materials has been studied during the last years, composed by one or a few layers of the same element, the same compound or more than one compound. Although several of them are in a well developed stage, new 2D materials emerge. Among them, Bismuth tri-iodide–Graphene have been reported a few times (theoretical and experimental results). and exhibits interesting properties. Although it has been applied as radiation detector, these predictions and results foresee photovoltaic applications for BiI₃ layers and van der Waals superstructures. Also, theoretical studies predict stable BiI₃—graphene heterostructures, with higher absorption for visible light photons related to BiI₃ monolayers. Within this framework, this work investigates the growth of van der Waals superstructures BiI₃—graphene.

BiI₃-Graphene 2D layers were obtained by physical vapor transport from BiI₃ (Aldrich 99,999%) nucleation and further growth, onto graphene covered TEM grids (single layer graphene film on a 2,5 μm holey silicon nitride film, Ted Pella), and onto 1 layer graphene film/200nm SiO₂ film on a 675 μm ultra-flat silicon substrates, 5×5 mm, Ted Pella. The growth was performed in an especially built equipment, varying initial pressure (10⁻⁶–10⁻⁷ mBar), BiI₃ mass (6-80 mg), source (260.2 °C) and substrate (40±1 °C) temperature (and then supersaturation), and deposition time (10-120 s), with a source-substrate distance of 15.0±0.5 mm), under high purity Ar atmosphere. Layers were characterized by High Resolution Transmission Electron Microscopy (HR-TEM), Fast Fourier Transform (FFT), Energy Dispersive Spectroscopy (EDS), Scanning Electron Microscopy - Field Emission Gun (SEM-FEG), Atomic Force Microscopy (AFM) and Gracing Incidence X-Ray Diffraction (GIXRD) and X-ray Reflectometry (XRR).

Twisted BiI₃ layers which determine Moiré interference were obtained, indicating BiI₃-graphene van der Waals superstructures with two or more BiI₃ layers. It was not possible by now to obtain an uniform coverage of the substrate, but this kind of superstructure cover all the grid. In our knowledge, this is the first report of Moiré interference for BiI₃ layers, and it is similar to the interference reported for graphene and for other van der Waals superstructures (WS₂-gr, MoS₂-gr). Furthermore, Moiré diagrams indicate that the angle between layers is not constant. EDS measurements show BiI₃ as the layer composition, and FFTs show that the orientation of the layers was always with c axis perpendicular to the substrate, while BiI₃ is always present in its rhombohedral phase R-3.

GIXRD confirms layer composition as BiI₃ in agreement with EDS results, the rhombohedral phase R-3 (data correlated with file 00-048-1795 PDF4+ 2021 database and with powdered BiI₃, in agreement with HR-TEM results, and the orientation of the BiI₃ layers with the *c* axis perpendicular to the substrate, which agrees with HR-TEM results as well. According to XRR, the BiI₃ layer exhibits a density of 6.0 g/cm³ (BiI₃ bulk 5.8 g/cm³), a thickness of 34.6 nm, which gives approximately 16 BiI₃ layers (c= 20.72 Å), and a roughness of 6.0 nm, approximately 3-4 BiI₃ layers.

The obtained BiI₃-graphene superstructure is similar to structures of TMDs-graphene (as MoS₂-graphene), and is stable, as was theoretically predicted.