MBE growth and topological phases of α-Sn epilayers on insulating (001) CdTe/GaAs substrates

<u>Volobuev</u> VV^{1,2}*, Turowski B¹, Polaczyński J¹, Kazakov A², Rudniewski R¹, Rosmus M³, Aleszkiewicz M⁴, Wojciechowski T¹, Zaleszczyk W¹, Kurowska B⁴, Muhammad Z¹, Dłużewski P⁴, Olszowska N³, Wojtowicz T¹.

- *lead presenter: volobuiev@magTop.ifpan.edu.pl
- 1 International Research Centre MagTop, Institute of Physics PAS, Poland
- 2 National Technical University "KhPI", Ukraine
- 3 National Synchrotron Radiation Centre SOLARIS, Poland
- 4 Institute of Physics PAS, Poland

 α -Sn is a zero-gap semiconductor that under external perturbations can possess various topological phases [1]. Bulk α -Sn is only stable below 13.2 °C. However, the α -Sn phase can be stabilized above room temperature in a thin film form [2]. Recent experimental studies of this material have been mainly focused on α -Sn grown on narrow gap semiconducting substrates [3,4], which makes transport investigations problematic and limits potential applications of this material [4].

In this work, we experimentally show that under applied in-plane compressive strain Dirac semimetal (DSM) phase exists which further is transformed in the Weyl semimetal (WSM) phase under applying magnetic field. 30-200 nm thick films of α -Sn are prepared by the molecular beam epitaxy on (001) GaAs with CdTe buffer. Structural characterization performed by reflection high-energy electron diffraction (RHEED), atomic force and scanning electron microscopy as well as X-ray diffraction (XRD) proves high quality of obtained samples. XRD measurements revealed -0.14 % of in-plane compressive strains, the prerequisite for the DSM phase. The α -Sn band structure is studied by angle-resolved photoemission spectroscopy (ARPES) as a function of both temperature and film thickness. It is shown by ARPES that the prepared samples possess DSM phase in the temperature range 10-300 K. The presence of the WSM phase is further confirmed by magnetoresistance measurements. Negative longitudinal magnetoresistance (NLMR) is observed in a wide temperature range (1.6-90 K). Pronounced Shubnikov–de Haas oscillations confirm the structural perfection of prepared samples.

Our results provide an important platform for further reliable investigation of transport properties and possible application of α -Sn in spintronic devices.

This research was partially supported by the Foundation for Polish Science through the IRA Programme co-financed by EU within SG OP (Grant No. MAB/2017/1).

References

- [1] Zhang D et al. Engineering topological phases in the Luttinger semimetal α -Sn. Phys. Rev. B. 2018;97(19):195139
- [2] Farrow RFC et al. The growth of metastable, heteroepitaxial films of α -Sn by metal beam epitaxy. J Cryst Growth. 1981;54(3):507-518.
- [3] Anh LD et al. Elemental Topological Dirac Semimetal α -Sn with High Quantum Mobility. Adv. Mater. 2021;33(51): 2104645.
- [4] Rojas-Sánchez JC et al. Spin to charge conversion at room temperature by spin pumping into a new type of topological insulator: α-Sn films. Phys. Rev. Lett. 2016;116(9):096602.