Anisotropic Magnetic Properties of the Layered Antiferromagnet LiCrTe₂ Catherine Witteveen^{1,2*}, Elisabetta Nocerino³, Sara A. lopez-Paz², Harald O Jeschke⁴, Vladimir Y. Pomjakushin³, Martin Månsson⁵, Fabian O. von Rohr² * catherine.witteveen@uzh.ch The reversible inclusion of molecules or elements into van-der-Waals structures is a chemical approach to manipulate materials. On one aspect, the inclusion is often accompanied with a redox reaction in which the host structure is partially reduced, therefore affecting the laters electronic properties with the addition of electrons. The other aspect is the evident change in lattice parameters upon the inclusion with a probable effect on the interlayer coupling. Here we report on the synthesis of LiCrTe₂ single crystals with the TlCdS₂ structure type, which can be visualised as covalently bound CrTe₂ sheets with Lithium sandwiched between them. We find this compound to order antiferromagnetically with a high Néel temperature of $T_N \approx 148$ K. Its characterisation by neutron powder diffraction (NPD) and MPMS shows a fully occupied Lithium site and a strong magnetic anisotropy with an A type antiferromagnetic ordering along the c-axis. A spin flip occurs around $\mu_0 H \approx 2.5$ T resulting in a ferromagnetic material along the c-axis. As the indirect synthesis of CrTe₂ by oxidation has been recently reported – opening the pathways for a potential 2D ferromagnet stable in monolayer form – our results contribute to the broader context of alkali metal adsorption on the electronic and magnetic properties of layered these materials. [1,2] ## References - [1] D. C. Freitas, R. Weht, A. Sulpice, G. Remenyi, P. Strobel, F. Gay, J. Marcus, M. Núñez-Regueiro, *J. Phys. Condens. Matter* **2015**, *27*, 176002. - [2] X. Sun, W. Li, X. Wang, Q. Sui, T. Zhang, Z. Wang, L. Liu, D. Li, S. Feng, S. Zhong, et al., *Nano Res.* **2020**, *13*, 3358–3363. ¹Department of Physics, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland ²Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland ³Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland ⁴Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530, Japan ⁵KTH Royal Institute of Technology, Roslagstullsbacken 21, SE-106 91 Stockholm, Sweden