Effect of pre-anneal chemistry on the growth and properties of epitaxial MoS₂ on sapphire Nicholas Trainor^{1,2}*, Chen Chen¹, Myeongok Kim³, Dorota Kowalczyk⁴, Shreya Mathela⁵, John Asbury⁵ and Joan M. Redwing^{1,2} Two-dimensional transition metal dichalcogenides (TMDs) such as MoS₂ hold great promise in a wide variety of electronic and optoelectronic applications. Large, wafer-scale coalesced TMD films can be grown epitaxially on sapphire using different deposition methods, including metal organic chemical vapor deposition (MOCVD). Prior studies have suggested that chalcogen atoms help passivate dangling bonds on the sapphire surface, thus enabling quasi- van der Waals epitaxy [1,2]. However, the exact impact of chalcogen passivation on the growth on TMD films is not well-understood. In this work, we study the effect of pre-annealing c-plane sapphire under H_2 vs a mixture of H_2 and H_2S , on the nucleation, growth, and properties of MOCVD-grown epitaxial MoS_2 . When pre-annealed under pure H_2 , the MoS_2 nucleates rapidly and randomly on the sapphire, quickly reaching saturation. These domains then laterally grow outwards, merging to form a coalesced film. In contrast, when the sapphire is pre-treated with a mixture of H_2 and H_2S , the MoS_2 preferentially nucleates along the sapphire step edges, likely due to preferential sulfur passivation of dangling bonds on the sapphire terraces versus steps. Due to the greater separation between the MoS_2 domains across a step terrace than between those along the same step edge, a non-regular, network-like growth occurs, resulting in elongated and aligned voids that close upon coalescence. Coalesced films were grown after different pre-anneal conditions and characterized to determine the effect of the pre-anneal on the final film properties. In-plane XRD measurements show that MoS₂ grown on H₂ pre-annealed sapphire has greater compressive stress than when the film is grown in H₂/H₂S pre-anneal substrates. This difference in strain was also observed using Raman and photoluminescence spectroscopy and is likely due to the pinning of MoS₂, preventing film relaxation. Additionally, the H₂ pre-annealed sample displayed a [11 $\bar{2}0$]MoS₂₍₀₀₀₁₎//[11 $\bar{2}0$]a-Al₂O₃₍₀₀₀₁₎ epitaxial relationship, while the epitaxy for the H₂/H₂S pre-annealed sample is rotated by 30° to [11 $\bar{2}0$]MoS₂₍₀₀₀₁₎ // [2 $\bar{1}10$]a-Al₂O₃₍₀₀₀₁₎. The impact of the pre-anneals on the grain structure and electrical and optical properties of the MoS₂ layers will be presented. ^{*}Lead Presenter: njt5294@psu.edu ¹2D Crystal Consortium, Materials Research Institute, The Pennsylvania State University, USA ²Department of Materials Science and Engineering, The Pennsylvania State University, USA ³Research Center for Advanced Science and Technology, The University of Tokyo, Japan ⁴Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, Poland ⁵Department of Chemistry, The Pennsylvania State University, USA ^[1] Lin YC et al. Realizing Large-Scale, Electronic-Grade Two-Dimensional Semiconductors. ACS Nano. 2018;12(2): 965–975 ^[2] Xiang Y et al. Monolayer MoS2 on sapphire: an azimuthal reflection high-energy electron diffraction Perspective. 2D Mater. 2021; 8(2): 025003.