Growth of Commensurately Strained KTaO₃ by Suboxide Molecular-Beam Epitaxy Tobias Schwaigert^{1,2*}, Sankalpa Hazra³, Tatiana Kuznetsova³, Salva Salmani-Rezaie^{4,5}, Steffen Ganschow,⁹ Hanjong Paik^{1,6}, David A. Muller ^{4,5}, Roman Engel-Herbert^{3,7} Venkatraman Gopalan^{3,8}, Darrell G. Schlom^{2,5,9}, Kaveh Ahadi^{10,11} Strain-engineering is a powerful means to tune the polar, structural, and electronic instabilities of incipient ferroelectrics. KTaO₃ is an incipient ferroelectric in which highly anisotropic superconductivity emerges near a polar instability in electron doped samples[1]. KTaO₃ also has a very large spin-orbit coupling[2]. Growth of high-quality epitaxial films provides an opportunity to use epitaxial strain to finely tune electronic and polar instabilities in KTaO₃. The use of molecular-beam epitaxy (MBE) to grow KTaO₃ has evaded demonstration—until now. Using a molecular beam of the suboxide TaO₂ emanating from an effusion cell containing Ta₂O₅ in combination with a molecular beam of potassium emanating from an indiumpotassium intermetallic in an oxidant ($\sim 10\% \text{ O}_3 + 90\% \text{ O}_2$) background pressure of $1 \times 10^{-6} \text{ Torr}$. KTaO₃ films are grown under conditions of excess potassium in an absorption-controlled regime. Biaxial strains ranging from -0.1 % to -2.1 % are imposed on the commensurately strained KTaO₃ films by growing them upon SmScO₃, GdScO₃, TbScO₃, DyScO₃ and SrTiO₃ substrates, all with the perovskite structure. Reciprocal space mapping shows the epitaxial KTaO₃ films are coherently strained to the underlying perovskite substrates provided the KTaO₃ films are sufficiently thin. Cross-sectional scanning transmission electron microscopy does not show any extended defects and confirms that the films have an atomically abrupt interface with the substrate. X-ray diffraction rocking curves (full width at half maximum < 30 arc sec on all of the above substrates) are the narrowest reported to date for KTaO₃ films grown by any technique. Laue fringes confirm that the films are smooth with a well-defined thickness. Atomic force microscopy reveals atomic steps at the surface of the grown films. SIMS measurements confirm that the films are free of indium contamination. By simultaneously using a molecular beam of suboxide NbO₂, mixed KNb_xTa_{1-x}O₃ films can be grown and the ferroelectric transition temperature is seen to depend on the niobium concentration in the film. ## References - [1] Ueno K et al. Discovery of superconductivity in KTaO₃ by electrostatic carrier doping. Nat. Nanotechnol. 2011; 6:408 - [2] Bruno FY et al. Band structure and Spin-orbital Texture of the (111)-KTaO $_3$ 2D Electron Gas. Adv. Electron. Mater. 2019; 5:1800860 ^{*}lead presenter: ts848@cornell.edu ¹Platform for the Accelerated Realization, Analysis, and Discovery of Interface Materials (PARADIM), Cornell University, Ithaca, NY 14853, USA ²Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA ³Materials Science and Engineering, Pennsylvania State University, University Park, PA 16801, USA ⁴School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA ⁵Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA ⁶School of Flectrical & Computer Engineering (FCF), University of Oklahoma, Norman, OK ⁶School of Electrical & Computer Engineering (ECE), University of Oklahoma, Norman, OK 73019, USA ⁷Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., Berlin 10117, Germany ⁸Department of Physics, Pennsylvania State University, University Park, PA 16801, USA ⁹Leibniz-Institut für Kristallzüchtung, Max-Born-Str. 2, Berlin 12489, Germany ¹⁰Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27265, USA ¹¹Department of Physics, North Carolina State University, Raleigh, NC 27265, USA