LaBr₃:Ce -⁶LiBr composite crystal for dual gamma-neutron detection application, crystal growth and characterization. Ouspenski V.^{1,2*}, Arzakantsyan M.², Danet R.², Menge P.¹ vladimir.ouspenski@saint-gobain.com 1 Luxium Solutions, USA 2 Saint-Gobain Research Paris, France The direct objective of the study was to create scintillation material for dual gamma-neutrons inheriting high energy resolution known for LaBr₃:Ce crystals processing also a very short decay time coupling with the property of neutron detection through ⁶Li co-doping. The fundamental question has been pointed out by practical applications: Could gammaneutron dual detection material with excellent energy spectrum discrimination capability be proposed? Meaning that the energy resolution (at ¹³⁷Cs isotope source) must be equal or better than 3.0% [1]. It is well known from phase diagram studies that LaBr₃-CeBr₃-LiBr are not forming phases [2] and therefore are decomposing into eutectics when solidifying, so doping of LaBr₃ matrix by Li is usually limited by filling in the interstitial positions in the host crystalline matrix where ⁶Li concentration is too low to support neutron detection capability. The materials composed from eutectic mixed phases compounds are usually suffering for the optical opacity [3] limiting the use of such compounds for scintillation application. An alternative solution has been proposed and successfully carried out to incorporate Li into LaBr₃ host matrix. Vertical Bridgman technique has been applied when growing LaBr₃:Ce crystals in ⁶LiBr flux. LaBr₃ crystals have a hexagonal crystallographic symmetry belonging to the space group 176 (P^{63} /m). The crystal growth has been carried out in "c" <0001> crystallographic direction by using an oriented seed. The grown crystals are containing thin fiber-like ⁶LiBr inclusions aligned in <0001> crystallographic direction in LaBr₃ hexagonal host matrix. The crystal singularity has been supported by using of an oriented seed. The presence of inclusions with a uniform alignment is limiting the scintillation light dispersion and keeping good optical transmission in the emission range for grown crystals and manufactured detectors. The grown LaBr₃:Ce- 6 LiBr composite crystals containing [Li] > 3% molar are demonstrating neutron detection capability keeping the advantage of very good energy resolution of LaBr₃:Ce crystals below 3.0% at 662 keV gamma source and good enough FoM = 1.66 (Figure of Merit) parameter for neutron/gamma discrimination. The new discovered approach for creation of composite anisotropic crystals with incorporation of inclusions originated from eutectics under the form of aligned fibers is opening a practical way for creation of new optical and scintillation materials. ## References - [1]. M.S.Alekhin et al. Improvement of c-ray energy resolution of $LaBr_3$: Ce^{3+} scintillation detectors by Sr^{2+} and Ca^{2+} co-doping. Appl. Phys. Letters 2013, V.102, N° 161915. - [2]. W.Gong, M.Gaune-Escard. Thermodynamic assessment of LaBr₃ unary and LiBr–LaBr₃ binary system. Comp. Couple. Phase Diagrams and Thermochemistry 2007, V.31, pp. 186–191. - [3]. S.Cheng et al. Self-assembled nat LiCl–CeCl $_3$ directionally solidified eutectics for thermal neutron detection. CrystEngComm, 2020, V.22, pp.3269-3273.