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Metastable -Ga2O3 with corundum structure can form an alloy, heterostructure, and 
superlattice structures combining with -Al2O3. Owing to lattice distortion caused by the 
difference in the lattice constants of each layer, fabrication of high-quality -Ga2O3/Al2O3 
superlattices is difficult [1] and their properties are not clearly understood. Therefore, it is 
necessary to understand the basic properties of -Ga2O3/Al2O3 superlattices as well as improve 
crystal growth technology. In this study, we performed band structure analysis of -
Ga2O3/Al2O3 superlattices using first-principles calculations and investigated the dependence 
of bandgaps on lattice strain and thickness of superlattice layers. 
 
The Quantum ESPRESSO (QE) program package [2] was 
used for all calculations. The pseudopotential self-
interaction correction method, implemented in the QE code 
[3,4], was used to obtain realistic bandgap values. Figure 1 
shows a simulation model of the -Ga2O3/Al2O3 superlattice 
consisting of a hexagonal unit cell of -Ga2O3 and -Al2O3 
accumulated in the c-axis direction. To investigate the 
influence of lattice strain on bandgaps, the biaxial strain was 
applied in the a- and b-axes directions by fixing the lattice 
constants to the same values as that of -Ga2O3 and -Al2O3. 
 
Figure 2 shows the change of bandgaps under biaxial strains. 
The values of bandgap and strain corresponding to bulk -
Ga2O3 and -Al2O3 are indicated by arrows. The direct and 
indirect bandgaps of the strain-free (𝜀 ൌ 0) -Ga2O3/Al2O3 
superlattice were 5.12 and 5.05 eV, respectively. The 
bandgap increased under compressive strain (𝜀 ൌ െ2.5%) 
and decreased with tensile strain (𝜀 ൌ 2.5%). The same 
tendency is shown in bulk -Ga2O3 [5]. In addition, because 
bandgaps also depend on the thickness of superlattice layers 
and composition, it is expected that precise bandgap tuning 
will be possible by controlling them simultaneously. 
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Fig. 2 Bandgaps of -Ga2O3/Al2O3 
superlattices under biaxial strain. 


