First-principles calculations of band structures of α -Ga₂O₃/Al₂O₃ superlattices Takahiro Kawamura^{1*}, Toru Akiyama¹, Yoshihiro Kangawa². - *lead presenter: tkawamura@mach.mie-u.ac.jp - 1 Graduate School of Engineering, Mie University, Japan - 2 Research Institute for Applied Mechanics, Kyushu University, Japan Metastable α -Ga₂O₃ with corundum structure can form an alloy, heterostructure, and superlattice structures combining with α -Al₂O₃. Owing to lattice distortion caused by the difference in the lattice constants of each layer, fabrication of high-quality α -Ga₂O₃/Al₂O₃ superlattices is difficult [1] and their properties are not clearly understood. Therefore, it is necessary to understand the basic properties of α -Ga₂O₃/Al₂O₃ superlattices as well as improve crystal growth technology. In this study, we performed band structure analysis of α -Ga₂O₃/Al₂O₃ superlattices using first-principles calculations and investigated the dependence of bandgaps on lattice strain and thickness of superlattice layers. The Quantum ESPRESSO (QE) program package [2] was used for all calculations. The pseudopotential self-interaction correction method, implemented in the QE code [3,4], was used to obtain realistic bandgap values. Figure 1 shows a simulation model of the α -Ga₂O₃/Al₂O₃ superlattice consisting of a hexagonal unit cell of α -Ga₂O₃ and α -Al₂O₃ accumulated in the *c*-axis direction. To investigate the influence of lattice strain on bandgaps, the biaxial strain was applied in the *a*- and *b*-axes directions by fixing the lattice constants to the same values as that of α -Ga₂O₃ and α -Al₂O₃. Figure 2 shows the change of bandgaps under biaxial strains. The values of bandgap and strain corresponding to bulk α -Ga₂O₃ and α -Al₂O₃ are indicated by arrows. The direct and indirect bandgaps of the strain-free ($\varepsilon=0$) α -Ga₂O₃/Al₂O₃ superlattice were 5.12 and 5.05 eV, respectively. The bandgap increased under compressive strain ($\varepsilon=-2.5\%$) and decreased with tensile strain ($\varepsilon=2.5\%$). The same tendency is shown in bulk α -Ga₂O₃ [5]. In addition, because bandgaps also depend on the thickness of superlattice layers and composition, it is expected that precise bandgap tuning will be possible by controlling them simultaneously. Fig. 1 Simulation models of α -Ga₂O₃/Al₂O₃ superlattice. Fig. 2 Bandgaps of α -Ga₂O₃/Al₂O₃ superlattices under biaxial strain. ## References - [1] T. Oshima et al. α -Al₂O₃/Ga₂O₃ superlattices coherently grown on γ -plane sapphire. Appl. Phys. Express 2018; 11: 065501. - [2] P. Giannozzi et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys.: Condens. Matter, 2017; 29: 465901. - [3] A. Filippetti et al. Self-interaction-corrected pseudopotential scheme for magnetic and strongly-correlated systems. Phys. Rev. B 2003; 67: 125109. - [4] M. Wierzbowska et al. Forces and atomic relaxation in density functional theory with the pseudopotential self-interaction correction. Phys. Rev. B 2011; 84: 245129. - [5] T. Kawamura et al. Bandgap engineering of α -Ga₂O₃ by hydrostatic, uniaxial, and equibiaxial strain. 2022; 61: 021005.