Growth and characterization of $Dy_{1-x}Y_xMnO_3$ single crystals by optical floating zone technique: A combined X-ray diffraction and DC magnetization study

G. Anandha Babu¹*, P. Aravinth Kumar¹, Arun Kumar², Keshav Kumar², P. Vijayakumar³, S. Ganesamoorthy^{3,4}, and Dhananjai Pandey²

*lead presenter: anandcgc@gmail.com

Rare earth manganites RMnO₃ (R = La³⁺ - Lu³⁺, Y³⁺) represent a fascinating family of multiferroic compounds due to an interplay between their charge, lattice and spin. Pure and Y³⁺ substituted DyMnO₃ samples were synthesized by solid state reaction method and grown as single crystals by optical floating zone method. $Dy_{(1-x)}Y_{(x)}MnO_3$ single crystals grown in Argon atmosphere, crystallize in hexagonal structure belonging to the P63cm space group. The structural analysis has been carried out by Rietveld refinement using synchrotron X-ray powder diffraction (SXRPD) data. The results obtained after the Rietveld refinement clearly demonstrate that the unit cell volume and lattice parameters decrease with increasing Y³⁺ substitution at Dy³⁺ site in DyMnO₃. Further, magnetic susceptibility (χ_{dc}) measurements on single crystals of h-Dy $_{(1-x)}Y_{(x)}MnO_3$ reveal that the Y^{3+} substitution enhances the antiferromagnetic ordering temperature (T_N) from 67 K for h-DvMnO₃ to 72 K for h-YMnO₃. Unlike the T_N ordering, the first spin reorientation (SR) transition temperature of Mn³⁺ decreases with increasing Y³⁺ substitutions. The remaining two magnetic transitions at still lower temperatures, i.e. Dy^{3+} ordering temperature (T_{Dv}^{3+}) and second SR temperature (T_{SR2}) , remain unaffected by Y^{3+} substitution up to x = 0.75. We also present a magnetic phase diagram of h- $Dy_{(1-x)}Y_{(x)}MnO_3$ showing stability field regions of different transitions. We believe that our study helps in understanding the magnetic transitions of the other h-REMnO₃.

¹ Department of Physics, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam – 603110, India.

² School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi – 221005, India.

³ Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102, India

⁴ Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102, India