Growth of Mg₂Si thermoelectric crystals with eutectic morphology by unidirectional solidification

Naomoto Hayashi^{1,2}, Yuui Yokota^{2,3}, Takahiko Horiai^{2,3}, Masao Yoshino^{2,3}, Akihiro Yamaji^{2,3}, Rikito Murakami², Takashi Hanada², Hiroki Sato^{2,3}, Satoshi Toyoda^{2,3}, Yuji Ohashi^{2,3}, Shunsuke Kurosawa^{2,3}, Kei Kamada^{2,3}, and Akira Yoshikawa^{2,3}

- *Naomoto Hayashi: naomoto.hayashi.s5@dc.tohoku.ac.jp
- 1 Graduate School of Engineering, Tohoku University, Japan
- 2 Institute for Materials Research, Tohoku University, Japan
- 3 New Industry Creation Hatchery Center, Tohoku University, Japan

Recently, the improvement of thermoelectric properties by a decrease of thermal conductivity using phonon scattering at nanoparticles is attracting attention in the development of thermoelectric materials^[1]. In our previous report^[2], we fabricated the SrTiO₃/TiO₂ thermoelectric crystal with a eutectic morphology of the TiO₂ rod phase in the SrTiO₃ matrix phase by unidirectional solidification from the melt at a eutectic point and the decrease of thermal conductivity could be achieved. Mg₂Si composed of less toxic and inexpensive elements has been actively studied as an environmentally friendly next-generation thermoelectric material^[3]. However, the figure of merit *ZT* of the Mg₂Si is greatly reduced due to its high thermal conductivity at low temperatures. Therefore, in this study, we tried to fabricate Mg₂Si thermoelectric crystal with the eutectic morphology to decrease the thermal conductivity and improve the *ZT* by the phonon scattering.

Mg(>2N5) and Si(>3N) powders were mixed at the eutectic point, Mg: Si=47:53, in the Mg-Si phase diagram. Crystal growth was performed using the mixed powder by the Vertical Bridgman (VB) method using various crucibles and insulators in N_2 or Ar. Phases and chemical compositions of the grown crystals were analyzed by powder X-ray diffraction (XRD) measurement and SEM/EDX.

Figure 1 is an as-grown Mg₂Si/Si eutectic crystal using a carbon crucible in Ar. The XRD pattern revealed that the grown crystal

was composed of only two phases of Mg₂Si and Si. Chemical composition analysis of the grown crystal was performed on the polished surface perpendicular to the growth direction (Fig.2). The SEM image indicated the phase-separated local structure, and only two phases of Mg₂Si and Si were confirmed in the elemental mapping. In this presentation, we will report details of the crystal growth, control of eutectic morphology, and thermoelectric properties of the Mg₂Si/Si eutectic crystals.

References

[1] W. Kim, et al., Thermal Conductivity Reduction and Thermoelectric Figure of Merit Increase by Embedding Nanoparticles in Crystalline Semiconductors, Phys. Rev. Lett. 96 (2006) 045901. [2] Y. Yokota, A. Yoshikawa, et al., Thermoelectric Properties of Nb-Doped SrTiO₃/TiO₂ Eutectic Solids Fabricated by Unidirectional Solidification, J. Electron. Mater. 48 (2019) 1827.

Fig. 1 Grown Mg₂Si/Si eutectic crystal.

1 cm

SEM image

Fig. 2 SEM image and elemental mapping of the grown Mg₂Si/Si eutectic crystal.

[3] Soon-MokChoi, et al., Thermoelectric properties of the Bi-doped Mg_2Si system, Curr Appl Phys 11(2011) 5388.