Hydrothermal growth of synthetic Rouaite $(Cu_2(NO_3)(OH)_3)$: A frustrated S=1/2 triangular-lattice magnet

Aswathi Mannathanath Chakkingal^{1*}, Falk Pabst², Vladimir Pomjakushin³, Maxim Avdeev⁴, Roman Gumeniuk⁵, Darren C. Peets¹, and Dmytro S. Inosov¹

- *Aswathi Mannathanath Chakkingal: aswathi.mannathanath_chakkingal@tu-dresden.de
- 1 IFMP, TU Dresden, Germany
- 2 Professur f. Anorganische Chemie II, TU Dresden, Germany
- 3 PSI. Switzerland
- 4 ANSTO and School of Chemistry, U. Sydney, Australia
- 5 Institut für Experimentelle Physik, TU Bergakademie Freiberg, Germany

The hydrothermal technique is an efficient strategy to synthesize mineralogically inspired structures, including natural and synthetic cuprate minerals with a variety of exciting frustrated magnetic lattices. We report the hydrothermal growth of synthetic rouaite, Cu₂(NO₃)(OH)₃. Deep blue single crystals up to $12\times5\times5$ mm³ in size were grown, and their alignment may be determined by eye. Neutron diffraction studies were performed to determine the compound's crystal and magnetic structure. Cu₂(NO₃)(OH)₃ crystallizes in a monoclinic structure consisting of alternating ferromagnetic and antiferromagnetic chains of Cu²⁺. This is similar to botallackite Cu(OH)₃Br, in which spinon-magnon mixing was recently reported. We report details of the crystal growth, crystal structure, magnetic structure, and the low-temperature magnetic and thermal properties.