Low-Dimensional All-Inorganic Cu(I) Halide Single Crystals as Efficient Xand γ-ray Scintillators

Yuntao Wu¹*, Martin Nikl²

- *lead presenter: ytwu@mail.sic.ac.cn
- 1 Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai, P.R. China
- 2 Institute of Physics AS CR, Prague, Czech Republic

Recently, low dimensional perovskite-like metal halides for light emitting and scintillation applications have drawn tremendous attention due to their extremely high photoluminescence quantum yields (PLQYs) and large Stokes shift, among which ternary copper(I) halides are the most studied ones because of their excellent photophysical properties and decent stability. For instance, Tang reported the ultrahigh LY (~90,000 photons/MeV) of Rb₂CuBr₃ scintillators with an emission peak at 385 nm [1]. Other copper halide scintillators have also been investigated, such as Rb₂CuCl₃, Cs₃Cu₂Cl₅ and (TBA)CuX₂ (TBA = tetrabutylammonium cation; X = Cl, Br) in the forms of single or poly-crystals. However, one serious shortage for Rb₂CuBr₃ scintillator is that the Rb element shows high natural radioactivity, which may hinder its practical application in scintillator materials.

This work reports a series of high-performance cesium copper(I) halide scintillators with strong self-trapping exciton (STE) emissions, such as Cs₃Cu₂I₅, CsCu₂I₃, and Cs₅Cu₃Cl₆I₂ [2-4]. They show simultaneously high effective atomic number (Z_{eff}), non-hygroscopic, self-absorption free, low afterglow, high scintillation yield, and excellent energy resolution characteristics which is absolutely unique feature among scintillation materials. Moreover, after doping with Tl⁺ and In⁺, the X-ray and gamma-ray detection performance of Cs₃Cu₂I₅ was further improved thanks to the enhanced harvesting of charge carriers (and excitons) [5,6]. They show simultaneously high effective atomic number (Z_{eff}), non-hygroscopic, self-absorption free, low afterglow, high scintillation yield, and excellent energy resolution characteristics which is a unique feature among scintillation materials. Thus, they can serve as versatile scintillators covering a wide range of radiation energies for various applications incl. homeland security and medical imaging.

References

- [1] B. Yang, L. Yin, G. Niu, J.-H. Yuan, K.-H. Xue, Z. Tan, X.-S. Miao, M. Niu, X. Du, H. Song, E. Lifshitz, and J. Tang, Lead-Free Halide Rb₂CuBr₃ as Sensitive X-Ray Scintillator, Advanced Materials, 2019; 31, 1904711.
- [2] S. Cheng, A. Beitlerova, R. Kucerkova, M. Nikl, G. Ren, and Y. Wu, Zero-Dimensional Cs₃Cu₂I₅ Perovskite Single Crystal as Sensitive X-Ray and γ-Ray Scintillator, physica status solidi RRL, 2020; 14, 2000374.
- [3] Q. Wang, M. Nikl, S. Cheng, G. Ren, Y. Wu, Undoped and Tl-doped Cs₃Cu₂I₅ thin film as potential X-ray scintillators, physica status solidi RRL, 2021; 15, 2100422.
- [4] S. Cheng, A. Beitlerova, R. Kucerkova, E. Mihokova, M. Nikl, Z. Zhou, G. Ren, and Y. Wu, Non-Hygroscopic, Self-Absorption Free, and Efficient 1D CsCu₂I₃ Perovskite Single Crystal for Radiation Detection, ACS Appl Mater Interfaces, 2021; 13, 12198.
- [5] S. Cheng, M. Nikl, A. Beitlerova, R. Kucerkova, X. Du, G. Niu, Y. Jia, J. Tang, G. Ren, and Y. Wu, Ultrabright and Highly Efficient All-Inorganic Zero-Dimensional Perovskite Scintillators, Advanced Optical Materials, 2021; 9, 13.
- [6] Q. Wang, Q. Zhou, M. Nikl, J. Xiao, A. Beitlerova, S. Cheng, X. Wen, J. Wang, G. Niu, J. Tang, G. Ren, Y. Wu, Highly resolved X-ray imaging enabled by In(I) doped perovskite-like Cs₃Cu₂I₅ single crystal scintillator, Advanced Optical Materials 2022; 10, 2200304.