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Indium phosphide (InP) is a promising material that is utilized in various applications including 
solar cells, high speed communication systems, and photonic devices.[1] Additionally, as a 
substrate, it is widely used for the heteroepitaxy of high crystal quality semiconductor structures 
including GaAs, InAs, InSb and Zn2P3.[2]–[4] Especially for Zn2P3, InP substrates provides an 
excellent platform to obtain high crystallinity thin films. [5] Unfortunately the scarcity of In 
and the consequent high cost make InP poorly suited for earth-abundant devices. Being in 
demand both in science and in the industry, the monolithic integration of InP on silicon (Si) can 
enable new sustainable technologies.  
Here, we show the growth of InP templates on Si substrates. To achieve this, we follow two 
techniques: liquid phase epitaxy (LPE) for the thin film growth and selective area epitaxy (SAE) 
for rectangular or disc shapes structures.[6] In both techniques, the growth consists of two steps: 
the initial deposition of liquid indium, and crystallization under phosphorous atmosphere.  In 
LPE, the main challenge is to prevent indium from dewetting, which is known to happen above 
room temperature. We will tackle this by reducing the interface energy with the substrate. We 
will explore different materials by depositing a thin film (HfO2, SiO2, Cr, Pd, Ti, MoOx, Pt) 
onto the Si (100) substrate via sputtering or evaporation before subsequent indium deposition. 
In the second technique, SAE, we first pattern nanoscale holes or stripes in a SiO2 mask on the 
Si substrate, and then deposit liquid indium inside these patterns. We will share our results on 
the structure and composition of these samples obtained by various characterization techniques 
including Raman spectroscopy, electron (TEM and SEM) and atom force microscopy (AFM).  
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