Birefringence dispersion management of langasite nonlinear crystals for the

improvement of mid-infrared amplification

Yuzhou Wang¹, Fei Liang¹, Dazhi Lu^{1*}, Haohai Yu¹, Huaijin Zhang¹, Jiyang Wang¹ *lead presenter: dazhi.lu@sdu.edu.cn

Nonlinear optical crystals generally hold the intrinsical contradiction between the laser damage threshold and transmission range, which restricts development of the high-power and largeenergy mid-infrared (mid-IR) lasers, especially the mid-IR optical parametric chirped-pulse amplification (OPCPA) system [1]. The langasite crystal was identified as a promising candidate for the 4–6 µm terawatt-class OPCPA system, but suffers the relatively low effective nonlinear coefficient (d_{eff}) [2]. Herein, a birefringence dispersion management strategy is originally developed and applied for the d_{eff} improvement of langasite crystals based on their structural symmetry, as shown in Fig.1. A series of La₃(Nb_{1-x}Ta_x)_{0.5}Ga_{5.5}O₁₄ (LGNT_x) solidsolution crystals (x = Ta/(Ta+Nb) = 0.17, 0.40, 0.51, 0.77 and 0.95) were theoretically designed and grown for the first time. By characterization of the crystals, the LGNT_{0.40} crystal was experimentally confirmed with largest d_{eff} by implementing a data-driven routine, which is 1.7 times improvement compared with that of the well-known La₃Nb_{0.5}Ga_{5.5}O₁₄ (LGN) crystal, and the 2.9 times of theoretical enhancement in the amplification efficiency of the OPCPA system. These results do not only provide a kind of candidate for the ultra-intense mid-IR lasers but demonstrate a feasible strategy for managing the birefringence dispersion applied in the optics, including polarization regulation, beam splitting, wave plates, etc. [3]

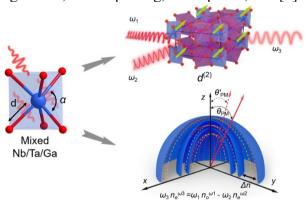


Fig.1 The birefringence dispersion management strategy by introducing LGT in LGN to regulate the (BO₆) polyhedron is implemented for optimizing the crystal structure and finally improving d_{eff} .

¹ State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China

^[1] von Grafenstein, L.; Bock, M.; Ueberschaer, D.; Escoto, E.; Koç, A.; Zawilski, K.; Schunemann, P.; Griebner, U.; Elsaesser, T. Multi-millijoule, few-cycle 5 µm OPCPA at 1 kHz repetition rate. Opt. Lett.2020; 45 (21): 5998-6001.

^[2] Liu, J.; Ma, J.; Lu, D.; Gu, X.; Cui, Z.; Yuan, P.; Wang, J.; Xie, G.; Yu, H.; Zhang, H.; et al. Few-cycle pulses tunable from 3 to 7 μ m via intrapulse difference-frequency generation in oxide LGN crystals. Opt. Lett. 2020; 45 (20):5728-5731.

^[3] Wang, Y.; Liang, F.; Lu, D; Yu, H; Zhang, H. Birefringence Dispersion Management of Langasite Nonlinear Crystals for the Improvement of Mid-Infrared Amplification. Cryst. Growth Des. 2023; 23(1): 620-628.