Modelling crystallization: When interfacial velocity depends on the expiring supersaturation

V. V. Ivanov¹, C. Tielemann², K. Avramova³, S. Reinsch⁴, R. Mueller⁴, V. Tonchev¹*

*lead presenter: tonchev@phys.uni-sofia.bg

The crystallization proceeds by the advancement of the crystal faces into the disordered phase with velocity r at the expense of the supersaturation Θ . It is not sustained in our model and changes from 1 in the beginning when $r=r_0$ to 0 at the end of the process. Using the kinetic law $r=r_0\Theta^g$, g is the growth order, we derive an equation for the rate of transformation $d\alpha/d(t/\tau)=2D\alpha^{(D-1)/D}(1-\alpha)^g$ with time scale τ . It is integrated analytically for the six combinations of spatial dimension D and g=1,2 towards obtaining $\alpha_{Dg}(t/\tau_{Dg})$. We verify our model by fitting $\alpha_{Dg}(t/\tau_{Dg})$, D=2,3; with the Johnson-Mehl-Avrami-Kolmogorov model, $\alpha=1-\exp\left[-\left(2t/\tau_{MAKn}\right)^n\right]$, to obtain $\tau_{MAKn}\approx 1.1\tau_{D1}$ and Avrami exponent n as 1.725, 2.5, respectively. Towards validation of our model, we develop a numerical protocol that is checked further using published experimental results and original data from Cellular Automata.

¹ Faculty of Physics, Sofia University, 1164 Sofia, Bulgaria

² Clausthal University of Technology, 38678 Clausthal-Zellerfeld, Germany

³ Institute of Physical Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

⁴ Institute for Materials Research and Testing (BAM), 12205 Berlin, Germany